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TBWNICAL NOTE 26ho

INTERACTION OF COLUMN AND LWAL BUCKLING

IN COMPRESSION MEM3ERS

By P. P. BiJlaard and G.

SUMMARY

P. Fisher

The actual buckling streas acr can be calculated from the first

author’s exact theory as well.as by his method of split rigidities. Both
methods yield practically identical results. By the latter method simple
formulas are obtained which express the actual buckling stress ~cr
directly in terms of the columh and local or plate buckling stresses.
Columns with box, I-, H-, and T-sections and angles are considered
separately. Interaction of practically significant magnitude occurs only
in cases of flexural and torsional buckling. In these cases the addi-
tional effect of distortion of the cross section is also taken into
account. The theory ticludes buckling in the plastic range. No post-
buckling phenomena are considered in the theoretical part of the paper.

Tests were carried out for a considerable range of ratios of cor-
rected free length to radius of gyration on two sections,’for one of
which the local buckl~ stress was in the plastic domain, and for the
other, b the elastic domain. The experimental buckling stresses are
in excellent agreement with those predicted by

I“NTRODUCTIO

It is customarv to consider that a column

the theofi.

N

may buckle in either one
of two ways: (a) By deflection of the entire column in a half wave of
length equal.to the effective column length (column buckling) or (b) by
plate buckling of its component webs and flanges in shorter or longer
half waves (local or plate buckling). In the first case it is tacitly
assumed that no distortion of cross section occurs, while in the second
the lines of intersection of the midplmes of the various plates are
assumed to remain straight. For a given column, buckl.imgis supposed
to occur at the lower of the two critical stresses, column or local.
In reality, however, there is an interaction of these two modes of
buckling, so that the real buckling stress acr will be smaller than

either of the buckling stresses for column or local buckling.

— ..—.—.- _____ —.. — --— –———
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With column buckling the buckling streas al is determined by the

Euler or Engesser load. b figure 1 61 is plotted against the ratio

‘ P = a/b of the half wave length a to the web width b, for example,
.

for a column section like that in figwe 2(a). On the other hand, with ‘
local bucklhg, which assumes the lines of intersection of the middle
planes of the plates to remain straight, the buckling stress is given
by U2 in figure 1. The latter becomes midnmm for a ratio B1 = a/b—
of order of magnitude 1. If no
~<@2 infigureltheminhum

smaller than al. Hence for an
length a, where afi < i32jthe
amd web and flanges will buckle
the column buckling stress ‘1
whole in a single half wave.

interaction is taken into account for
plate buckling stress F2)min ‘s
I-section with an effective buckling
plate buckling stress a2 is governing
in relatively short waves. If a/b> 132

governs and the column buckles as a

Actually the buckling deflection consists of a deflection W1 of

the member as a whole, as it occurs with colunm buckling, and a deflec-
tion W2 of the web, as it occurs with plate buckling (fig. 2(b)).
Assuming ftist an infinite rigidity against colum.nbucning, W1 will
be zero and a“bucld.imgof the web will occur at a stress a2 with a

maximum deflection W2 and in waves with a half wave length a of the

order of magnitude of the web yidth b (a/b = 131 in fig. 1). ‘TMs web
deflection W2 will cause an exkernal moment in the column as a whole.
It will result in an entirely negligible fmternal moment in the column,
however, since the latter is practically exclusively caused by the \,
deflection of the flanges alone. Hence, assuming the column again to
have a finite rigidity, this deflection W2 has the same effect as an
initial deflection Wi< W2 of the entire column, causing an etiem

bti pot an titern.almoment. It iS wdl-known that an initial.Deflec-
tion Wi of a column causes an extra deflection of about ~cl(~ - IJcflwij

where UC is the actual compressive force and ~ is the elastic bucK1.ing

stress of the column (see reference 1). Since, for the very small half
wave length a of the deflection W2J the column buckling stress 01

for multiple-wave buckling is inmost cases very high as compared with
the plate buckling stress a2 (Co-e q and q for a/b = P1 ti

fig. 1), this means that the deflection W2 causes a column deflection W1

which is smaller -t&m [a~(ul - a~]w2 and hence very - as co-ed

with W2. This extra deflection wl- increases the deflecting forces

-tax dx dy(#w/a#) that act on an element t dx dy of the web, while

it increases only slightly the restraining forces acthg on that element.
Since wl<< w2 the ficrease of the deflecting forces will-be relatively ‘

,-

. —
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small, so that the actual buckllng stress Ucr till be only slightly

(less than 02 compare ucr and a2 for a/b = J31 in fig. 1). .

If, on the other hand, the I-section has an effective buckling
length a which is larger tb the Utfig value EL2= P2bj so t~t

P = a/b is larger than 92 in figure 1, bucldinn will occur in a single

half wave. In this case, besides the deflection WI of the member as a

whole, a small deflection W2 of the web (fig. 2(b)) till also occur

because of the deflecting forces (-tax dx dy #w/&?) *hat act on each

element t dx d.y.

In this case, in a shilar way as above, the extra deflection W2

will be of the order of magnitude E11(U2 - al] wl which is small as

compsred with WI because for a/b ? $2, in most cases, a2 is very

much luger than al (fig. 1). The deflection W2 increases the
external moment in the column while it practically does not increase its
irrternalmoment. Since, however, W2 is small with respect to WI, the
actual buckling stress Ucr wiU be only slightly smaller thm Cl.

The qualitative concl~ions above are fully worked out quantitatively in
the theoretical part of the paper and are confirmed, h particular, by
study of the interaction equations (7k) and (75).

Considerable interaction occurs and governs the actual buckling
stress only if the individualbucklfng stresses al and U2 have their

smalleat value for a half wave length about equal to the effective colum
length. This happens, for example, with angles and T-sections, where for
flexural buckling as well as for torsional buckling (which is a simplified
form of plate buckling) both individual buckling stresses al and U2

are the smaller the larger the length of the column. b the latter case
interaction actually occurs between three individual modes of buckling
(fig. 3).

In the theoretical part of the paper the exact theory for determining
the actual buckling streas acr of arbitrsxy plate assemblies is given.
It leads to transcendental buckling conditions for Ucr which have to be
solved by trial and error. Furthermore, by the first atihor’s method of
split rigidities design formulas are derived which express acr directly

in the individual buc~x stresses al and U2 and for a column with
T-section in al, a2, and a3. As is customry, in all derivations

column deflections by shear were neglected.

In the experimental part of the investigation stress-strain tests
were carried oti on square tube columns. Column tests were then carried
oti using the stress-tirain data to study the interaction of local and
column buckling.

—.
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This investigation was csrried out at Cornell University under the
sponsorship and with the financial assitiance of the National Advisory
Committee for Aeronautics. The theoretical part was csrried out by
Professor P. P. Bijlaard and the experimedxil part was carried out by
Professor G. P. Fisher. The project was directedby Professor George
Winter, who is also at Cornell University.
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Theory”)
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in elastic
Theory”)
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Theory”)

in elastic
Theory”)

load, including influence of twisting
transferred by plate to besms
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Et

G

I

)- ‘1, 2Ucr in elastic range

plate thickness

(used in section entitled “Exact Theory”)

(used in section entitled ‘fExactTheory”)

deflection

coordinates

distance between shear center and center of gravity

constants in theory of plastic plate buckling (used
in section entitled “Exact Theory”)

cross section of beams (used in section entitled
“Exact !hEOry”) ‘

total cross section of columns

total cross section of webs situated
to direction of buckling

psrpendiculsx

total cross section of flanges situated perpendicular
to direction of buckling

flexural rigidities of beams (used in section entitled
“Exact Theory”)

cOmt ants

am constant

defletting force in method of split rigidities

modulus of elastici~

secant modulus

tangemt modulus

modulus of rigidity

moment of inertia
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polar moment of inertia about shear center

Saint Venant torsion constant

bending or torsional moment

plate flexual rigidity

transverse shear

resisting force in method of split rigidities

shear center

enerpg

coordinate axes

given by equations (8), (I-1),(27), and (28)

ratio between half wave length a and plate width b

coefficietis in method of

reduction coefficient for

(used in section

Poisson’s ratio

normal stress

(used in section

(used in section

entitled

entitled

split rigidities

plasticity

“Exact Theory”)

“Exact Theory”)

under “Buckling of I-Section in
Direction Perpendicular to Pl& of Web” entitled
“Comparison with Exact Theory”)

I& is polar moment of inertia of web abouk shear
center (used in section under “Buckling of Columns with
T-Section” entitled “Critical Stress for T-Section with
Fixed Shear Center Axis”)

reciprocal spring constant of restraining plate
(used in section entitled “Exact Theory”)

——— .— —.
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.

19= E~v (used in section entitled “Exact Theory”)

fl=~~ (used in section entitled “Exact Theory”)

THE OR ET ICALINVE ST IG AT ION

EXACT THEORY

The exact general theory of elastic as well as plastic buckling of
plate assemblies was published by the first author (references 2 and 3).
It will be sunmwrized here to the etiefi that it is used in this paper.

Consider an asymmetric column, consisting of a web plate with
width b and thickness t, which is supported at both unloaded edges
by flanges of different width 2b’ andt~ckness t’ (fig. k(a)). Let
the web plate be the “buckling” plate which is restrained at both edges
by the flanges, the “restraining” plates.

The X-axis is chosen in the longitudinal direction of the column,
while for the buckling plate the Y- and Z-directions are chosen as shown
in figure 4. Hence the differential equation for the buckling plate is,
for the general case of plastic buckling (references 3 and 4),

(1)

where I = t3/12 and Ucr is the buckling stress ax. For pure com-
pression, as occurs here, A, B, D, and F, if expressed in terms of
the secant modulus Es, the tangent modulus ~, and Poissonrs ratio V,

are (reference 4):

—-. — ...— ———
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A = $~$4

B = $2/$4

D = @4

*1 = 1 + 3 (%/%)

*2=2-2(1 - 2V)(E_@)

$3 =4

V4=(5-4v+3e)- (1 - aJ)2(E@)

F = 1/(2 + 2V + Xe)

e = (E/E8) - 1

(2)

With V = O.5 these values reduce to those used by Stowell.(reference 5):

In the elastic domain
equations (2) yield:

A = (1/3)(@) + (%~)

B = (2/3)(J@

D = (4/3)(q#)

F = (1/3)(!Z@)

in equations (2) e = O and Es =% =E, so that

(3)

A= D=l/(1-v2)

B = V/(1 - V2)

F = l/C2(l + Vfl

1

With sufficiently long members and a plate length L it w be
assumed that

w = Y sin(pm/L) (4) ,
.
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in which Y is a function
waves in the X-direction.
yields

of y only and p is the number of half
Insertionof equation (4) in equation (1)

Dq-2(B+2F)#~ : + (& - @@Y= o (5)
w

in which

(6)

With Y = eW this leads to

w=
(Cl cosh ~Y + C2 s~ ~Y

with

-!-C3 Cos ~ + C4 sin qy) Cos * (7)

in which

On the other hand for
a similar equation such as
exsmple, the lower half of
analogous to equation (7),
surface

(8)

(9)

K=; .“

J

the restraining plates, with thickness t‘,
equation (1) also applies. Considering, for
a flange, as sketched in figure 5, this leads,
to the general equation of the deflection

-- -—--— .-. ..— —— .—- —— .——
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(W’ = Cl’ cosh ~’y’ + C2’ SiIlh~’y’ + C3’ C06 ~’y’ +

C4’ sin yfy
‘)-(F)

(lo)

with

%,2’ = ~ (U).~2+An +K(#)

in which (@’)2 =t’ucrJEI’ and 1’ = (t’)3/12.

Since the buckling and restraining plates are rigidly connected,
X = pfi/L has, of course, to be the same for all plates.

Dealing first with the restra-n plates, for the sections dealt
with in this report it is od.y necesssry to consider the case of figure 5.
Let the buckling plate exert a moment ~’ = M cos(p@L) on the

restraining plate. In the
mometis in the restraidng

Hence
tions

and

plastic domaih the bending and twisting
plate are (references 3 and 4)

[ 1-“1’’%+’(%
[
a%’+~ a~t1-EI’ B — —
axp (w)2

I

%* ‘ ‘=1” a%
‘ -%’

.

(12)

at y’ = O, wheie w’ = O md %w’ /a# = 0, the boundary COtii-
are, frm equations (12),

W’=o (lsa)

a%,
~, = -EI~D ~ = ~ COS ~ (13) ,



.
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At y’ =b’ (fig.
called equivalent

5) the plate is
load IL,’= O.

free, so
Choosing

11-

that ‘7 =0 ana these-
the pos tive dfiections in

the same way
equation for

as in refere~ce 6, figure 16o, page a5, and using the
the transverse E&ar from reference 6, p%e 297,

Iy=+’-%=-%+%-w
ax b’ ax ax

or from equations (12)

[

b3wr b%,
=EIf D—

‘Y‘
+ (B + 4F)

(aY’)3 &ay’ 1
Hence from equations (12) and (14) at y’ = b‘ the boti~
tions ~t. Oandpl=Osre

Y

~ b~f + D a2w’ o
a~ RY’)2=

D aswt a%, ~
+( B+4F) -—=

(*’)3
b*,

(14)

condi-

(13C)

(13d)

Inserting equation (10) in the four boundary conditions (13a) to (13d)
yields the constads Cl!, C2’, C3’, and c4’ in equation (10), so

that the angulsr rotation at y’ = O can be computed from equation (10),

g = (c@-J + c4’a#) Cos EL

= (~’)y, =ov (15)

The value l/* = (~’) Y,+/(aW’/&’ )Y,a may be called the spring

constant of the restraining plate. Hence

6 = ED~

= ED@w’/by’)/~’ (16)

————_ ... . . _ —— ~—.



which value will be wed in the boundary Conditionsof the buckling plate, WY be computed,
yie~ (reference s, equation (~), p. 60)

where

1
(18)

where

w

If more than one rednaining plate like that of figure 5 meets at yl . 0 the tot&L spring

Constant
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so that for a symmetrical flange l/$t = 2/* and ~t = v/2, or from
equation (16)

et= (1/2)0 (20)

Considering now the buckling plate (fig. 4(b)), the restraining
plates are at the same time the “beams” by which the buckling plate is
suppotied. At y= O (fig. k(b)) the difference between the transverse
shearing forces acting on an elemeti dx of the left beam will have to
be in equilibrium with the equivalent load ~ transmitted ~U~

buckling plate and the resultant of the compressive forces acting

on the been element dx. Here Al is the cross section of the left

beam. The pertinent equilibrium condition is given by the equation
(reference 6, p. 346):

(21)

in which B1 is the flexurd rigidity of the left beam about its major
axis. At y=o

or, from eqwt ions (12),

‘Y [ 1=-EID~+(B+4F)-&

so that from equation (21) one
plate at y = O is (reference

a4w
[‘l~+EID& &3 +

(22)

of the boundary conditions”of the buckling
3, equation (I), p. 61)

1(B + 4F)* + Alucr ~ = O
a+

The other boundary condition at y = O follows from equation (15).
Figures 4(b) and 5 show that for a one-sided flsmge %1= (% ’)y~+

—.— .——.
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From figure 4(b) Myl is a negative moment. 13yequation (16) *1 may

be expressed in terms of ‘1” For a symmetrical flange e~ is given

by LJt in equation (20), where 13 follows from equations (17) or (17a).

The mibscript 1 refers to the left flange (fig. 4(a)). Hence from
equations (I-2)and (I-6)equation (23) yields as second boundary condition
for y = o (reference 3, equation (II), p. 61)

In the same way the boundary conditions for y = b become

i+w

[
B2=-EID

a% asw
1

a%_.—+ (B + 4F)—
ax tij a* +‘2ucra~

The mibscript 2 refers to the right flange. Insertion of equation (7)
in the foux boundary conditions for the buckling plate leads to four
linear homogeneous equations, wldch yield only values of the constamts ,
different from zero if the denominator determinant vanishes. This leads
to the general-buckling condition (reference 3, equation (61), p. 62)
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{[ (%2 S1S2 - c&#’ - 01S2 + e281 r2 + ele~4 -
) 1

~21is2-(e,sa+‘4q2+e@!l+‘,e@ls@2‘malb‘ti~b-I
al%&s2 - (e~ + e2)(”~ + “2).2 + 2@2 +

1 {[201f)2C&2COSh ~b COS ~b + 0+. ~2 S~ -t S2

}

~1 + ‘2)s1s2 + elea(sl + “2)q2 “tiqb CCIS

J

)e2s1 qr +

1(Gl + (12)r2 -

{[
a2b+~. a22s1+s2-

( )] (el + e2 q2 )+ el + e2 S1S2
( )]

- ele2 “l + “2 r2 cosh ~b sin a2b +

%%2 [ ( )S1S2 + e1s2 + e2s1 qr + G1e2q r122=0

in which

q = ~’ - (B~2/D)

r = a22 + (Bk2/D)

(24)

T =q+r

‘?2+%22

= a{mii

“1,2
~2

(‘~%,’ k2
)- ‘l,2Ucr

1

(25)

. —.— .._ __ — ———— .— _
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For the elastic range A, B, D, and F .are given by equations (3), so
that from equations (9)

G=l

H=O

K=l - ~2

(26)

The same buckling condition (24) obtains here, in which, consequently,

r=~2+vl.2

~2

( )
‘1,2 = ~ ‘1,@2 - ‘1,2acr

~= EI

1-+

while in equation (17)

%,2’ =

rt= (%)
12+v~2

N’ = EI ‘

12-v

(27)

(28)

For u I- or H-section where both flanges are alike” 81 = 132= 19

and sl = S2 = s by which equation (2k) transforms to
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(+2 . CL& - )I&&-# + e2S2T2 Sillh alb SiR ~b -

2a&2(w2 - 2&2) cosh ~b C08 ~b +

2U~T (O&V + i%) cosh <b SiR ~b + ~a@2 = O

in which

u=s - f3r2

-V=S - eq2

1

(3)

(30)

n= s + f3qr J
while e is given by et from equations (20) and (17).

If the deflections of the beams (the flanges) in their own plane
are neglected, so that s = m, equation (a) reduces to (reference 3,
PP. 59 w 63):

~ tanh(~b/2) + ~ tan ((b/2) + 19T = () (3U

This condition applies for any symmetrical rotational restraid of the
web. In reference 3 the pertinent expressio~ for e were derived for
several cases. For I- or H-sections e is given by et from equa-

tions (20) and (17).

With relatively narrow and thin flanges, the rotational restraint
exerted by the flar&es on the web may be
equation

(%
2r4 -

(29) transforms to

~2q4 - S%2) Sj.llh~b SiR ~b -

tigiected, so that 8 = ~ and

~~q~? (cosh~b cos ~b - 1) +

2~q2ST 13tflh~b c08 a.2b- ~r2sT cosh ~b SiR ~b = O (32)

For a T-section, where the web m~ be couidered as the buc~ti
plate, at the free edge of the web S2 = O and e2 =rn. Denotimg sl

— —.
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and 131,which refer to the
transforms to (reference 2,

restrained edge,
equation (34))

WA TN 26k0

by s and e, equation (24)

(~2r% - ~2q%) sdnh ~b sin ~b - %~(q~,+ r%) cosh ~b cos ~b +

(CL2T ~2r2
9

- esq Sillh~b C08 ~b +

(33)

where (3 is given by equations (20) and (17).

For an angle with equal legs the legs may be assumed to transfer n~
bending moments ~ to each other, so that e = ~. Consequently from
equation (33) the bucklfng condition for each flange becomes (reference 7,
equation (40)):

g2q2sT sinh ~b cos a2b - ~r%T cosh ~b sin a@ = O (34)

In case of a T-stiffener or a COIW of a section as given by fig-
ure 6, at edge I sl = ~ and f31= CO,so that, denoting S2 and e2

at edge 2 as s and e, equation (24) transforms to

eST2 + ~~T2coth ~b cot ~b +

~T(eq2 )-scot~b - ~T (&2
)

-scoth~b=O (35)

This case was com@etely worked out in reference 8, chapter 2.2. It
was found that in case of a T-shaped steel sheet stiffener, which buckles
at the yield stre88, the interactionbetween the two modes of buckling,
that is, torsional and local buckling, was negligible.
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DERIVATION OF INTERACTION FORMULAS BY METHOD OF

SPLIT RIGIDITIES .

The method of split rigidities divides the elastic or elasto-plastic
behavior of a composite qtructure into its component parts. After the
individual buckling stresses for these component parts are calculated,
an interaction formula, which cotiines the individu~ critic~ firesses~
gives the actual critical stress of the composite structure.

This method was previously applied to the calculation of the critical
stresses of btit -up columns (references 8 and 9) and to flexural and
torsional buckling of angles (references 7, 8, and 10) smd open sections
in general (reference 10) as well as to the calculation of critical
stresses in sandwich plates (references 1 and U.). The application to
sandwich plates was very extensively explained in reference 1. In its
application to the interaction of column and local buclding the method
hag to be used in a more generalized form. If two or more modes of
deformation are involved in the buckltng process, mch as column buckling
on the one hand and plate buckling of the web on the other in the case of
an I-sectionj these two types, denoted as cases (1) and (2), respectively,
are ftrst considered separately. While one tyye is considered, the
rigidity against the deformation of the other t~e iS ass~ed tewor~~
to be infinite.

In considering cases (1) or (2) separately, an equation may be
established between the itiernal reactions and external actions. For
case (1) above, for example, it is appropriate to compare the internal
and external bending moments. b other cases, for example, case (2)
above, it is convenient to establish an equation between the restraining
and deflecting forces acting on a small element of the plate. In general
for each case the most appropriate tnternal and external actions should
be compsred, which rosy,for other cases, differ from those metiioned
above. For each separate case the external actions (bending moment,
deflecting force, or otherwise) are directly proportional to the buckling
stress for that case (al or a2 for cases (1) or (2), respectively) and

to the deflection Wi.thbuckling (Wl or W2, respecti~~). Hence these
external actions may be expressed in these values: al, W1 or %9 W2.

Since during incipient buckli~ the internal actions are equal to the
external ones, the former are also expressed in al, W1 and u2, W2

for cases (1) and (2), respectively.

For the actuA combined case, with buckling stress crcr and deflec-
tion w = W1 + W2, the deflection W1 and W2 sre of form slmilsr to

those for the sepaate cases or are assumed to be so. ConsequemUy the

—. —— .._ —— —— .
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internal actions caused by these deflections are assumed to be also
equal to those for the separate cases. Hence the total internal action
may be expressed in terms of al, U2> WI, and W2.

On the other hand the total externql aution with actual combtied
buckling is proportional to the actual buckling stress Ucr and may be
expressed in terms of Ucr and of a linear function of the deflections
W1 and W2. Writing down the equalities of fiernal and external

actions, firstly for the particular actions considered in case (1) (in
the chosen example the bending mometis) and secondly for those considered
in case (2) (here the restraining and deflecting forces act- on a
small elemeti) two homogeneous linear equations in W1 and W2 are

obtained, from which the buckling condition is found by equating the
denominator determinant of these equationE to zero. Since this deter-
minant contains al, U2j ~d ucr this gives a formula which expresses
Ucr in terms of the known individti buckling stresses al and U2.

In order to show more &Erectly how this method is applied, the
explicit case of an I-section column will be considered first. In the
section entitled “General Case of Columns with One or Two Planes of
Symmetry” the general case of sections which are symmetrical.with one or
two axes will then be dealt with. E the sections entitled “Buckling of
Tubes with Square Cross Section” and “Buc~ing of C01~ with H-Sha~d
Cross Sections” cases of special sections, that is, tubes and H-sections
which show some special features, are e~d. It follows that for all
these sections the interatiion is in general negligible.

The interaction is important only if the web that is perpendicular
to the direction of column buckling is shrply supported or elastically
restrained at one side and free at the other side, so that a conibination
of flexural and torsional buckling occurs. TIMs case occurs with
T-section columns and with angles. These sections are dealt with in the
sections entitled “Buckling of Columns with T-Setiions” and “Buckling of
Angles with Equal Legs.”

Bucklhg of I-Section Column in Direction Perpendicular

to Plane of Web

Derivation of interaction formula.- First an I-section with com-
paratively narrow and thh flanges is considered (fig. 7(a)) so that,
when the web buckles, practically no rotational restraints are exerted
on it by the flanges.

If the column buckles in a dtiection perpendicular to the plane of
the web, its deformation may be split into two parts: (1) Buckling as a
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column, witho~ aistofiion of the cross section (fig. 7(b)) and (2) dis-
tortion of the cross section (fig. 7(c)).

If Ody
the buckllng

case (1) occurs with buckling
stress is

where Et is the tangent modulus and r

the cross section. In the elastic range,

With a deformation according to case

in a half wave of length a

is the radius

~=E.

(36)

of ~ation of

(2) alone, where, as stated
above, the web is practically simply supported at the umloaded edges,
for ths same half wave length a the buckling stress would be (refer-
ence 3, equation (37) or reference 1, equation (34))

[ 1‘%1 A/~2) + 2(B +2F) + D132~2=T
bt

or in the elastic domain

()la? 1 2
(J2= ——+p

b% $

(37)

(38)

where

B = a/b (39)

In order to obtain the interaction formula, an equation will first
be derived which expresses the equality between the external moments and
the internal moments in the cross sections of the column.

If only a deformation according to case (1) occurs, tivolving at an
arbitrszy point a deflection W1 (figs. 7(a) and 7(b)) it follows from

the equality of internal and external moments denotedby ~ and l&,

respectively, that ~ = M& or

_ .—.-—. — ..
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in which A= is the cross-sectionalarea of the column. This equation

holds in all cases where the deformation W1 has the shape of a sine

wave, no matter whether it is produced by an actual critical load Pl

or by some other agent which causes the member to deflect in this shaye.
This is so because the internal moment is merely a functionof the
curvature. For the case of sine-wave deflection this curvature is
proportional to the deflection itself at all points, so that internal
moments are given by equation (kO), no matter what the cause of the
sine-wave deflection.

This @ also hold true for the plastic rsnge, if P1 or al are
calculated from equation (36) by using the tangent modulus corresponding
to the actual axial stress acr in the column.

Assume now that a complete deformation according to figure 7(a)
occurs by buckling with a half wave length a. Thenby the deformation
according to case (1) the internal mometi is givenby equation (kO). By
the deformation according to case (2) (fig. 7(a)) the deflection of the
web will vary in the Y-direction according to a curve which may be
approximated sufficiently accurately by a sine wave. (This would actually
hold true for W1 = O.) Hence the average deflection of the web from

case (2) is about (2/~)wp. With concentric cylindrical.buckling of
the single web with a half wave length a the buckl@ stress for the
elastic range would be

n%
‘2C = —

a%

TC2Nb2=— —
b2t a2

l-(%1=— —

b% ~2

or from equation (38)

[i-f-l1!3 2
C2C = 1 ‘2

F+p

=(’+b(s2
2

(41)

(42)
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Hence, in the same way as sho~m above, it follows from
internal and external moments that, with a cylindrical
~=~ or

~=

=

where ~ is the cross-sectional
average deflection (2/IT)W2 from

%2 .

23

the equality of
deflection W2c~

(W)

area of the web. Therefore the
case (2) causes an internal moment

~ Awqu2w2 (44)

Consequently with buckling accordimg to figure 7(a) the total internal
moment is, from equations (~) sad (~) Mi = Mil + %2 or

Mi
( )

= A= a~w~ + ~ ~ q“2w2 (45)

From equation (42)

7 =
/

1 (1 + B2)2 (46)

With the additional notation

fi=z%
fi%

(M’)

Equation (45) becomes

%.=%1+%2

= ( ) (48)Ac UIW1 + q@2w2

If the actual critical.stress is Ucr, deflection wl from case (1)

causes an external moment M& = Acucrwl while deflection W2 from

case (2) causes an external moment %2 = ~acr $ w2. Hence the total

external moment is

— —. ..—. —_. — ———
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Q=

=

or, using equation (47),

%

Since ~ and Mi have to

since & cancels,

which gives O?le
equation can be
and restraining

%-h

%1 + %2

AcCcrWI + %@cr ~~ W2 (49)

= %Ucr(wl + bp)

be equal, equations

(5Q)

(48) @ (50) yield,

+@%J=~lwl + n@f32w2 (51)

equation for finding the interaction formula. Another
obtained by expressing the equality of the deflecting
forces acting-on a mall element of the web.

If only a deformation according to case (2) occurs (fig. 7(c)),
that is, if W1 in figure 7(a) were zero, the critical stress in the
elastic domain is U2 from equation (38). For the equilibrium shape

of the middle plane in case (2) at an sxbitrary point P of the plate
the deflecting fore acting on a small element t dx dy is
D2 = -tU2 ti ~(a%?asl.\

Since for the sane shape of the middle plane at that particular
point P the second derivative %w/aX2 iS prOpOfiiOti tO the ~
deflection W2 of the plate, D2 is proportional to IY2 and to W2

and hence it may be denoted by CU2W2.

factor which is a constant only for the
shape of the deflection surface, but is
the plate. Since the restraining force

caused by the transverse shear stresses
force D2 it follows from the equation

R2 = D2

that

In the elastic
shape of the middle

R2 = CtT2W2

Here c is a proportionality

given point P and for tk ssme
different for different points of
R2 acting on the element and

is equal to the deflecting

(52)

domain the restraining force depends only on the
plane of the plate. In the plastic range the ratio

—. .._ ._
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of internal moment to curvature depends on the modulus and thus on the
magnitude of the average compressive stress. Hence equation (52) remains
true in the plastic domain even if tinecompressive stress differs from
a2, provided that in calculating U2 from equation (37), values A, B,
D,and F are calculated for the actul compressive stress ‘cr”

Considering again the actual deformation of the column dur~
buckling according to figure 7(a), it follows that the deflection w
from case (2) causes a restraining force fR2 accordimg to equation 52).
The deflection wl from case (1) causes a cylindrical bending of the

web. If ODQ this cylindrical bending occurs, the buckling stress of
the web is equal to a2c from equation (42). In that case the aversge
deflection force D1 actimg on various elemetis of the web would be

greater than cu2cwl because the proportionality factor c for a given

point P of the web, as stated above, applies to a shape of the deflec-
tion surface similar to that of W2 (fig. 7(a)). The influence of the
deflecting forces is the greater the greater the distance of the elements
on which they act is from the edges of the web. Hence their influence
may be expressed fairly well by comparing it with that of contfiuously
distribtied loads (proportionalto W1 or w2) on the bending moment
in the middle of a simply supported beam with span b. For a uniform
load q representing a distribution like WI, in the middle (y = O in

fig. 7(a)) this bending moment is ~ qb2. It iS > qb2 for sinusoidal
f12

distribution like W2. Therefore as an average t~- deflecting force D1
on an elemerrtin case only deflection W1 occurs ~ be expressed as

D1 = (fi2/8)CC2cW1.With the notation

7 = x2/8 (53)

it follows then from the equality of restraining sad deflecting forces,
or

the

‘1 = Dl, that

Consequently

RI = CYU2CW1 (%)

the total restrain@j force acting on an element of
web with buckling according to figure 7(a) is, from equations (52)
(%), R =R2+R1 or

R = crJ2W2+ CyIJ2cwl (55)

-. —.—.——.—. — — ———
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or, using equation (42),

R = ccfg(q + ?~l) (56)

With the actual critical stress ccr deflection W2 causes a

deflecting force CUcrw2 while deflection WI causes a deflecting

force C7UC=W1. Hence the total deflecting force is

Equating
equation (56)

D = CUcr(lT2 + ml) (57)

this deflecting force to the restraining force from
yields, since c cancels,

‘Cr(wg + ml) =

Equations (51) and (5) are two

U2(W2+ Wq)

ecmations with

(53)

three u.nlmowns,
acr>Wl, and wg. This is necessary ad sufficient, since wl ahd W2

have a common arbitrary factor, so that only the ratio w2/wl has to

be lmown. Writing equatians (51) and (~) as follows:

(U1 - ‘cr)’1 - @(Ucr - Ta2)w2 = O

1
(59)

7( ~cr - Tup)wl - (U2 - Ucr)wg = o I
the buckling condition is
minant of these equations

{
“cr ‘ & Ul

J

obtained by equating the denominator deter-
to zero, yielding

+(1- 27@q)u2 -

>

k 1
131 + (1 - =’7~)U2 ‘}2- 4(1 - 7@(al - y~2U2 ‘2 (60)

in which, from equations (k@, (47), w (53)

=*

.

(46)
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(47)

(53)

so that

@
.2%

flAc

Y
fi2

=—
8

%bY@=~—=0.7a T
44 c

while al and (Y2 are given by equations (36)

Comparison with exact theory.- In order to
equation 60) its results will %e compared with

and (37) or (38).

check the accuracy
those of the exact

(61)

of

calculation, according to which the buckling condition for this case
is given by-equation (32). It is given also, though in different nota-
tions, by equation (t), page 347 of reference 6. For several c~l
sections with narrow flanges figure 182, page 348, of the same reference
gives values of v agatist the ratios a/b = ~. .Withthe notations of
the present report

(62)

A check of this graph shows, however, that the moment of inertia of the
suppoti@ beams, the flanges, with a width d and a thickneas t,
has been erroneously assumed for these channels to be equal to & td3

12
instead of to half of that of the entire cross section with respect to
the axis of inertia parallel to the web. Hence the curves actually
apply to I-section columns with flanges of width d rather than to
channels. The curves for d = 4 inches and d = 2 inches are reproduced
here in f@e 8, where also the pertinent cross section is given. The
Euler curves for the same I-sectionsj plotting al according to equa-

tion (36) with ~ = E, are given in figure 8 by the dashed curves. All

curves refer to the elastic range.

Although the web width b should theoretically be measured between
the middle Planes of the flanges by which it is supported, for a correct
comparison it will be measure~ here between the ~;r faces of the
as was done in the exact calculation in reference 6. According to
tions (36) and (38)flwith ~ = E and for a flange width d = ~’,

web width b = 15 3 , a plate thickness t
T

= 5/16”, and ~isson’s

ratio V = 1/4.

flanges,
equa-
a

— . —
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a@ = wo& (63)

()

’12
u~E = 0.000345 B + ~ (64)

while from equation (61)

7@ = 0.52 (65)

For several ratios P = a/b mlues of q, al/E, and U@ have been
calculated from equations (46), (63), and (64), respectively. Hence
Ucr/E is computed from the appro-te interaction equation (6o) . The

resuits for d = 4 inches are given in’the table below. Corresponding
appro~te values ~ from equstion (62) have been computed and inserted
in the table as vcr. These values have to be compared with the exact

values Vex according to figure 182 of reference 6 or figure 8 of this

report, which values are also given in the table.

d
in.)

4

P;=—

1
2
2.5
3
3.5
6

l-l

0.25
.04
.019
.01

(.0057)
(.0007)

‘1/E

0.0181
.00452
.00289
.00201
.00148
.00050

0.00138
.00215
.00290
.00383
.00495
.01312

0.001338
.00166
.001706
.001522
.001246
.000469

6.20
:.;;

6:60
5.98
3.67

6.20
6.90

2:;
6.05
3.72

Percent
error

o
0
-.14
-1.50
-1.15
-1.35

It follows that equation (60), derived by the method of split
rigidities, is very accurate and deviates but slightly to the safe side.

For an I-section with d = 2 inches, according to equations (36)
and (38),

while from equation (61)

a@ = O.73/a2

‘2/E
()

12
= 0.000345 p + ~

(66)

(67)

Y$ = 0.62 (68)
.
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For this cross section
same way and are given

29”

the prtinent values have been calculated in the
in the table below. Values of ~ex have been

obtained from figure 182 of reference 6 or figure 8 of this report.

m
* cr

5.73
4.18
2.24’

vex

5.85
4.08
2.24 3

Perceti
error

-2.2
2.5
0

Here, too, the agreemeti between $Cr and vex is very satisfactory.

In figure 8 values Vcr from equation (6o) are given by circles showing

the excellent agreement with the curves. The cross section of figure 8
is unusual, since the moment of inertia with respect to the minor axis
is very low as compared with the cross-sectional area.

Simplified, more approximate interaction formula.- For normsl
I-sections or channels the values of rJ1, a2, and Ucr, if plotted

against the ratio 13= a/b of half wave length a to web width b,
willvaxy asin figurelo The buckling stress is governed by the
horizontal line AB for ratios p between 81 and p2 md by the

curve for ucr for about p >92. At A, for P = pl, U1 is very

high as com@ed with U2. For p ? P2, on the other hand, U2

very high with regaxd to cl.. Equation (60) may be written as

is

-m (69)

If now Crl is much higher than u2, such as is the case for p = pl, the

last term under the radical is very much smaller than unity. Dencting
this term by e, the term in the braces can be written as follows:

1- r
(

l-e=l. l-:6 -; #-. . .
)

(70)

—.. —-———...—— --—--——— ——.—— ..
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in which

From the derivation of equation (69) it follows that
for acr =e obtained if q is equated to zero, so

equation (71)

4(1 - YZ)U1U2C%

(
al+u

)
2

2

Hence from equations (69), (70), and (72)

r 1
U* 1al + (1 - 7@)q*a

a-cr ‘U7+U2 (U1 + U2)*
!

Since al>> cr2,in the last

be equated to unity, so that

Crcr=

=

Inthesamewayat j3~
found that

‘cr -

NACA TN 26ko

(71)

conservative values
that from

(72)

(73)

term in the brackets /(
2U1* al + U*) ~Y

equation (73) reduces to

(
U*

1- Y# )upal + ci*

al + (1 - 7fmY*
O*

al + U2

i32,where as a rule U2 >> al, it is

(1- al
7@ al + U*)

‘1

U* + (1 - 7@)crl
al

(Y2+ al

(74)

(75)

.

,*
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Since @ is always
well as for P >132

31

smaller than unity, this yields for j3=p~ as
the conservative values

( )-l+ a-l-l= ‘1 2
(76)

Criterion for range of negligible interaction.- From equation (74)

for p = !31 the decrease of acr tith respct to a2 d~ to ~terac-
tion is

(M)2 = U2 - Ucr

(77)

From equation (75) for P = ~2 the decrease of ucr ~th res~ct to
tJl is

Yflq
‘1 (m)‘U2+U1

At 13= pl value up is equal to al for @ = Pa (fig. 1), so that

from equation (n)

From equation (36), stice P = a/b

(79)

(80)

—.— ~——. —.. —. ——— ———- — ——— -—.——-—
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It should be noted that this equation, as well as equation (36),
neglects the influence of shear deformations, as is customary. However,
for such small buckling lengths as considered here (for ~ = i31 the

buckling length a xl) the shear deformationsmay mibstamtially decrease
the buckling stress al. It was shown in an unpublished paper that this

does not influence the resulting governing interaction as expressed in
equation (93). From equations (79) and (8o)

@

‘*”)2=(132/P$+1 “2
On the other had, at B = f32 the ~lue al iS eqti to a2 for

P = P1 (fig. 1), so that from e~tion (W)

l?romequation (38)

so that from equation (82)

‘1

‘I&++2

(81)

(82)

(83)

(84)

The stress a2 from equation (38) is minimum for 13= PI = 1. Assuning,

for an example, the rather low ratio B2/Ell= 10, so that p2 = 10, and

using equation (61), equation (81) for P = PI yields

(Au)z =
o.78AJ&

101
02

(85)

——. ._ —
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Equation (84), for P = P2, gives

-+- “,(As)~ = 0-78Aw &

%7
= 0“030c “1

33

(86)

With ~/& = 1/3 or 2/3, equations (85) and (86) give decreases

(Au)2 and (Aa)l of O.0026u2 or 0.0052U2 and O.OIU1 or 0.02a1,
respectively, and thus maxhums of 1/2 and 2 percent, respsctivel.y.
From equations (81) and (84) the interaction is the smaller the greater
the ratio 132/P1,so that for B2/Pl Z 10 it is negligible. In the

elastic range ~2 is determined by the condition (fig. 1):

From equation (38), since U2 is minimum for p

so that horn equations (87) and (36)

()fi2E ()

*2
= 3.62E ~

(a/r)2 ~~2

or

(4r)p=p2 = I-.6’jt)/t

(87)

= P~ = 1, with V = 0.3

(88)

(89)

(90)

- . - ..— -.— ~— .— -—— — ———.- .—
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or

= (a/b)p=p2

NACA TN 2640

= ~.65r/t

Hence, since for $2/$12 10 the interaction

negligible for

(91)

is negligible, it is also

(92)

Approxhate formula for ~ amount of interaction.- ~ P2/Pl
is of the order of magnitude of 10, it is seen from equations (81)
and (84) that for other ratios 13~f31 than 10 the discrepancies (Au)2

and “(Au)l will vary practically proportionally to (PflB2)2 or, from

equation (91), to (t/r)2. From equations (85), (86), and (92) for
P!2/Pl= 10 or r/t = 6 the governing discrepancy AU is 3(Aw/A-) per-

cent. Hence in general the maximum decrease of U1 or U2 by integr-
ationwillbe

(93)

It was assumed above that the rotational restrahts offered by the
flanges to the web could be neglected. It may be shown, however, that
equation (93) remains valid if the web is substantiallyrotationally
restrained. From the derivation of equations (51) and (58) it is evident
that these equations and hence the resulting buckling condition (6o) and
its further elaboration apply for that case as well. Only @, 7, and V
change in value in that case. ~ even equation (61) for @ remains
practically the ssme. Indeed, the restraints cause a decrease of @
but an increase of ?’,so that a calculation shows 7P to be practically
independent of the rotational restra~s. Even for negative restraints
(see the section entitled “Buckling of Columns with H-Shaped Cross
Section”) and also for the quite differerrtcase of the web of a T-section
(see section entitled “Buckling of Columns with H-Shaped Cross Section”)
7@ from equations (~8) and (176) is 0.8Aw/~ and 0.75Aw/&-j respec-

tively, and thus practically equal to 7fl= 0.78Aw/~ from equation (61). “

In calculating the individual buckling stress az of the webs the

——
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restraints at their unloaded edges have, of course, to be taken into
account. In this case ~ will have a value different from that of
equation (~) . However, q may ~ws sufficient~ accurately be
equated to zero, as was done from equation (72) on.

Finally equation (93) is based on equations (86) and (92). To see
whether equation (92) remains valid for rotational@ restrained web
edges the most extreme case of built-in web will be considered. For
this case (reference 6) the minimlm value of G2 is

= ()6.32E ; 2

and occurs for a/b = J31= 0.7. Hence now, instead of equation (89)
J-

or

or

With r/t = 6 equation

P2/Bl = 7.5/0.7 = 10.7,

[*,+2=-(32

(a/r)p-+2 = 1.2m/t

B2= (4)p+2 = 1.25r/t

(95) yields i32= 7.5, so that

and hence it is but slightly higher

PpJPl = 10 for r/t = 6 and simply supported web edges.

Furthermore, for a given ratio 132/1111,(Au)2/u2 from

and (36) is independent of the rotational restraints of the
other hand (Au)l/al from equation (82) till decrease with

restraint. From reference 12 for fully clamped edges

[) 1
2 l-r%U2= l/f12 + 2.5 + 5~ —
b%

(94)

(95)

than

equations (79)

web. On the
increasing

(96)
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Hence for r/t = 6, 132= 7.5 ~ PI = o=7, ~, US@3 efwati~ (61)J
equation (82) yields

(97)

Consequently frcm equations (86) and (97) for r/t = 6 the governing
discrepancy Au = (Acf)l for varying amounts of web restraint will vary

betmen 3(A.JAJ percent and 1.9(~/&) percent, so that for any posi-

tive rotation restraints equation (93) yields safe results. Apparently
with negative web restraints, such as occur ti H-sections, for r/t = 6,
AU maybe luger than 3(Aw/AJ percent, so that equation (93) errs

on the low side. This will also become appsrent from the section
entitled “Buckling of ColumnE with H-Shaped Cross Section.”

is in tbe plastic range, for simply suppotied web edges
from ~u&&s (87), (36), ana (37) one has, -e~ of e~tion (89))

or, instead of equation (91),

132=,.65 $$ (98)

Here E$ is the tangent modulus and ~ is the reduction coefficient

for plastic plate buckling (references 3 and 4), both referring to the
actual buckling stress ‘cr” Since &/E is smaller than ~, for

equal ratios r/t the value of 132 is smaller than in the elastic
range. However, ~1 is likewise smaller than its value ~1 = 1 in

the elastic domain (reference 3). Nevertheless, ~pJ~I may be somew~t
smaller than in the elastic domain.

Equations (79) and (82) apply also to the plastic domain, where al
and U2 are given by equations (36) and (37), respectively. Equa-

tions (8o) and (81) also remain valid so that for th same ratio 112/P1

the ratio (Au)~a2 for P = pl is the same as in the elastic domain.

.
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Because in equation (37) factors
than factor A, the ratio between

(B+2F) and D
the values of U2

37

are always higher
for p = 132

and p = plj for the same ratio BPJ~I, is even higher than that
expressed by equation (83) for the elastic domain. Hence for equal
ratio p~pl the ratio (Au)I/al from equation (82) iS ~fll s~er

than in the elastic domain.

Moreover all discrepancies between Ucr and al or a2 are

greatly reduced in the plastic range because with decreasing acr the

pertinent plastic values ~, A, B, D, @ F ticrease. This may
reduce (M)i from equation (93) msmy times, in the same way as a
relative difference in elastic buckling stress may be reduced many times
in the plastic range. For steel columns or plates of which the buckling
stress is, for example, at the yield stress (in the sense that the
tsmgent modulus is zero) an increase in the elastic buckling stress by

.100 percent will result in no increase in the actual plastic buckling
stress.

Therefore in the plastic domain equation (93) will yield safe
values for (Aa)i.

General Case of Columns with One or Two Planes of Symmetry

From the preceding derivations for columns with an I-section it is
evident that it makes no difference whether the symmetrical support of
the web is effected by symmetrical flanges or otherwise. Therefore
formula (93) applies in general for any column of which the pertineti
web is symmetrically supported and positively rotationally restrained
at both unloaded edges and which buckles in the plane of symmetry and
in a direction perpendicular to that web. Examples are columns with
an I-section, channels, and box sections. In the latter case (fig. 9),
which will be dealt with more extensively in the section entitled
“Buckling of Tubes with Square Cross Section” in the case of buckling
in the mode of figure 10, Aw refers to the joint cross section of the
two horizontal webs, which buckle individually in the same direction as
the entire column.

Moreover, from the derivation of the interaction formulas (74),
(7!5),@ (76) it follows that they apply as well for columns which
buckle in the plane of the web, and which are symmetrical with respect
to that web. Examples of this kind are H- and T-sections. The plate
buckl~ stress U2 in the above-mentioned formulas refers here to the

buckling stress of a plate which is clamped at
free at the other. For this case y@ folJows
(16o), (166), (167), and (175) and is equal to

one unloaded side and
from equations (157),
0.69Af/~ where Af is

—— —
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the total cross section of the flanges. For these cases too the interac-
tion between column and plate buckling is generally negligible.

The interaction is importarrtonly if the pertinent web, that is,
that perpendicular to the direction of column bucliMng, is elastically
restrained at one side and free at the other, so that a combination of
flexural and torsional buckling occurs. This case is dealt with in the
section entitled “Buckling of ColumnE with T-Section.”

Buckling of ‘Ilibeswith Square Cross Section

In ths squsxe tube the foux plates act as if they me shply supported
at the unloaded sides, so that their buckling stress in the elastic domain,
from equations (38) and (88), is

(88)

In this case condition (92) is certainly satisfied so that the
interaction will be very small. However, in connection with the tests
on these sections reported later herein, they ~ be studied in some
more detail.

The following two cases will be discussed separately: (a) The
plates buckle at about a2. One has then to investigate whether such
late buckling induces column deflections and consequent interaction.

t’)b The member buckles by column deflection at about al, that is, at

P Z 62 in figure 1. In this case one has to investigate whether such

column buckling induces plate deflections and, if so, what their effect
is on interaction.

(a) The plates buckle -trically with respect to the vertical
and horizontal axes of inertia of the tnibe(fig. 11), so that the total
equivalent load ~ which they transfer to the column as a whole is

zero, in the vertical as well as in the horizontal direction. Hence
no bending of the column as a whole is induced by local buckling of the
plates. It is as if the column were tofinitely rigid against bending,
so that in figure 1 at ~ = 131= 1 the situation is the same as if al
were infinite. Hence at p = ~1 in figure 1 Ucr is not smaller than
an so that

‘cr = ~2 = 3.62E ; 2
()

(99)
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.

and no interaction occurs. (Of course, a very slight deflection of the
unloaded edges of, for example, the horizontal plates occurs because
the vertical plates in figure 11~ compress very slightly in the
transverse (vetiical) direction by the loads transferredto thereby the
buckling (horizontal)plates, but the resulting deformations maybe
neglected.)

At 13= 132 (fig. 1) likwise the buckling stress IJ1 of the

column is not diminished by a buckling of the cross section according to
figure 11 because this does not change the position of the center of
gravity of the cross section. Hence it does not cause an extra external
moment. Neither does it cause a change of the internal moment. Con-
sequently it does not affect the buckling stress of the column, so that
at 13=$2

(loo)

and no interaction occurs.

Interaction may occur, though, with buckling of the webs according
to figure 12. Here, however, U2 is much higher than according to
equation (88). The plate buckling stress in this case is the same as
for a section according to figure 12 with b’ = b/2. The buckling
stress for tlds case was calculated (reference 3) from equation (31),
where, as was derived in reference 3

()t3al ‘ coth al’b’
=ea=p

- ~’ Cot ~’b’
e

P1’)2 + (@)2

and y and a.2’ are given by equation (n) above. The ratio b/t

at which the horizotial plate buckles at a given stress is expressed in
terms of those ratios (b/t)~ ad (b/t)SS at which plates with both

sides fixed or both sides
at the same stress. This
equation (62)

b—=
t

simply su~orted, respectively, would buckle
relation is expressed in reference 3 by

(101)

where 71 for several ratios p = ~ is given in figure 13 of that

reference. It follows from equation (88) that

.—— —.—.. . ———.
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For a plate with both

NACA TN 2640

(102)

unloaded sides fixed from equation (94)

Hence from equation (101)

or

U2 = (2.52 -
()

t2
0.6271)% ~

For the section of figure
P = tb’/t’b = 0.5, whence
71 =0.52. Thus equation

Since the factor 71 for

12, with tt = t
from figure 13 of
(105) ~elds

()
2

a2 = 4.84-E;

(103)

(104)

(105)

bt = b/2,
reference 3 one finds

(106)

the horizontal plate in figure 12 is about

midway between those for simply supported (71 = 1) =d for ~
clamped plates (71 = O), the optimum half wave length will be about
the same as for a plate with one side clamped and the other simply
supported, namely, 0.80b. Hence here pl in figure 1 is 0.80.

For a square tube (fig. 9) the moment of inertia and the cross-

sectional area sre I =
*(’4 - A4)

and Ac=B2- A2, res~ctively, so

that the radius of inertia is

——

(107)
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To take an example, with B = 2.5 inches and t = 0.062 inch,

A = 2.376 inches and r2 = 0.991 square inch. With
a = 0.80b = 0.80(B . t) = 0.80 x 2.438 inches = 1.952 inches, equa-
tion (36) yields

u–
~2

E =2.56E
1- (1.952)2/0.991

While from equation (106)

() 2
up = 4.84 *8 E = 0.00314E

Since equations (74) and (76) from the section entitled “Bucklimg of
I-Section in Direction Perpendicular to Plane of Web” apyly in the preseti
case, from the more conservative equation (76) at 13= 131

(108)

It is apparerrtthat the interaction is negligible even for the mode of
figure 12. Moreoverj since for the mode of “figure.11 crcr from equa-
tion (99) is smslllerthan for that of figare 12, buckling according to
figure 12 will got occw in the ftist place and acr is givenby
equation (99), resulting in

()
2

‘cr .3.62 ~g E = 0.00235E (109)

(b) With buckling as a columu at !3= f32 the deflection WI of

the column causes deflective forces -tua2w/ax2(fig. 20) which cause
a similar deformation of the cross section as in figure 12. For an
equally distributed vertical load q on the horizontal plates of fig- .
ure 10 the moments M in the corners C follow from the equation

yielding

M=&qb2

t

.-..——- _—— ———.. ——..
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or 3/4 times the clamping mometis”for a fully”clamped plate. Hence a
conservative value for the buckling stress is obtained by using the
average of a shply supported and a fu12y clamped plate. Thus from
equations (38) and (96)

[) 1
I&l

‘2 =
l/B2 + 2.25 + 3@2 —

b%
(no)

At B = 132 the value of al is equal to Cs2 for @ = P1 so that from

equations (88), (89), and (9o)

a– = 1.65 ~
r

p = a/b = 1.65 ~ (1-m ,

As A= b- t and B = b + t, from equation (107), since t/b is small,
r = O.41b, so that from equation (Ul)

or with the dtiensions given above

P2 = 0.6m3 ~ = 26.6

Hence from equation (110), for ~ = P2

p = 2129.25
&

a N = 1.244E
2.4382 x 0.062

.

In figurelat p= 132,from equations (88) and (109)

al = (U2)P+1 = O.00235E

(I@

so that from equation (76) a conse-tive

1“2M o.00235E
“Cr = =

value for ~cr at p = 132 is

= o.002346E
. .
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Hence the effect of interaction is here less than 0.2 percent. According
to the more accuate equation (75), since y@ is here about
0.75AVr/& = 0.75 x 0.5 = 0.38

1“24545 0.00235E = 0.0023~
‘cr = =

Hence the more accurate effect of the interaction is only 0.1 percent.

The approximate formula

$(*)2 ‘erced

(93) yields an effect of

= ~(’-~ Perceti = 0.2 perce*

This formula gives values which are too high because the mode which
yields the m~ value 02J that iSz plate buckling according to
figure 11, does not govern the itieraction in this case of buckling
according to figure 10.

Thus for concetiric buckling the effect of the interaction between
column and local buck.1.~ in square txibesmay be neglected.

Buckling of Columns with H-Shaped Cross Section

Somewhat more-pronounced interaction between column and plate
buckling may occur in H-sectio~ where the width of the flanges is such
that they are rotationally restrained from buck.lingby the web (fig. 13).
In that case the optimum half wave length of buckling will.be larger than
the width b of the web, so that in figure 1 Pl> 1. Thus the
ratio ~~~1 on which the interaction depends may be smaller here than
if the web were simply supported or elastically rotationally restrained
by the flanges smd therefore more interaction may occur.

Let the H-section have the dknsions given in figure 13, so that
b =A-t = 2.875 inches, b’ = O.~ = 2.3125 inches, and t = 1/8 inch.
The buckling condition is givenby equation (29), but it may more easily
be obtainedby using equations (74) and (75), which, according to the
section entitled “BucklinR of I-Section Column in Direction Perpendicular
to Plane of Web,” apply h~re.

The plate buckling stress a2 follows from
condition

,xs=s~+2sIII=o

reference 13 from the

. .————.-z — .-- — .— ——
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which, using the pertinent tables .(reference14), is satisfied for a
minhnml stress

u2 = 0.0020CJ3E= a,m psi (3J.3)

for a half wave length a = 2b . 5.75 inches. Thus here F1 = 2 (fig. 1).
The radius of ~ation of this section with respect to the middle plane
of the web (fig. 13) is given by

or numerically 4 = 1.375 square inches, so that a2 _ @75)2 _ 24
1.375 “

Hence flmn equation (36), with ~ =E, at B = PI ‘~fig. 1)

. I?E _ 0.4U

‘1 (a/r)2,
(114)

The tmme value 7@ as found in equation (61) for the case of figure 7
will approximately apply here, so that

Hence equation (74) yields

= 0.411+ 0.815x 0.002
‘cr 0.413

a2

0.41263 o.0020m
‘~

= 0.002006E

so that at ~ = B1 the interaction is negligible.

(115)



At ~=P2

.%.—.
(’J2)$+1 = 0.0020C8E

‘1 (a/r)2

EO that, with r2 = 1,375 ~q~ inches, from equation (D6)

a . ~gpor2 .82.3 in.

Hence

Since for these high P values table6 are not available, the plate buckling stress 02

for 13. 132, and hence for the case where the deflection of the beam me neglected, was

calculated directly from the pertinent equation (31)

~ tanh (~b/2) + ~ tan(~b/2) + 6-r = O (31)

in which e is given by et from equationa (~) and (17),

By trial ad error it was found that equation (31) is satiafied for U2 = 0.0675E.
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Moreover, this case ~ also be calculated by the method
rigidities. This method yields a buckling stress of 0.0665E.
thus

‘2 = 0.0675E

of split
Assuming

(117)

the actual critical stress canbe calculated from equation (75). Since
with the assumed large half wave length in the X-direction the web is
bent approximately according to a ~abola by the moments 1$ exerted

on it by the more unstable flanges, it follows from the derivation of
equations (47) and (53) that here

7 = 1.2

7gf= 0.8 &/& = 0.192 (IL8)

Hence from equatiom (75), (LL6), and (117),

a2 + (1 - @)a
acr = 1 al

a2 + al

= 0.0675 + (0.808)(0.002)
0.0695 %

= O.oolgga

Even here the interaction diminishes al only by 0.5 percent. Since

here Aw/~ = 0.24 and r/t = /~/O.125 = 9.4 a rough estimate from

% 6 2 percentequation (93) would yield a decrea’seof 3 —
()AC%

= 0.3 percent.

That equation in the section entitled “Buckling of I-Section in Direction
Perpendicular to Plane of Web” was derived for webs with no restraints
or with positive rotational restraints only. It was already remsrked
there that for negative web restraints it will give values for (~) j.
which are too small. In the present case, however, the order of magnitude
is correctly indicated by equation (93).
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Buckling of Columns with T-Section

In tb stability of such sections it 1s best to distinguish two
cases: (a) The flange haEIa relatively small torsional rigidity or is
not significantlymore stable than the web (fig. 14) or, more generally~
the web is not substmtially rotationally restrained by the flange, and
(b) the flange has a relatively large torsional rigidi~ and is much
more stable than the web, so that the web is substantisJJyrotationally
restrained.

On the basis of a numerical example it will first be shown that in
case (a) the interaction from cross-sectional distortion is practically
nil. Case (b) will then be discussed in greater detail.

(a) If the ratio b/t of the web is not much greater than the
ratio b‘/t’ of the flange and the flange is relatively weak (fig. 14),
so that the web is only slightly rotationally restrained by the flange,
both web and flange remain practically straight h cross section; that
is, the cross section is not distorted during buckling. Hence in that
case a column with T-section buckles approxbnately in the way that it
is assumed to buckle in the analysis of flexural and torsional buckling.
The interaction formula for the buckling stress for this case was derived
by Kappus (reference 15) from three simultaneous different equations of
the fourth order and also by Lundquist and Fligg (reference 16). It was
also derived by the first author according to this method of split
rigidities (reference“1O). The exact solution for this problem was
given by the first author in references 2 and 3, including the influence
of distortion of section, while b the present report it is given by
equation (33).

In reference 10 the buckling stress for a steel column with an
effective length L of 700 centimeters and with the cross section of
figure 15 was calculated from the interaction formula of flexural and
torsional buckling (without regard to cross-sectional distortion) as
well as from the exact equation (33). The correspondingbuckling stresses
were 948 and 942 kilograms per square centibneter respectively. (~

Lreference 10 the first stress is also given as 9 2 kg/cm2, which value
was due to a comptiationsl error.) Hence in this case the exact buckl~
stress is only 2/3 percefi less than that found from the assumption that
the cross sections of the plates do not bend.

It was stated in reference 10 that this is due to the high value of
the critical stress of a plate which is clamped at one unloaded side and
free at the other for a half wave length of many tties its width, as
compsred with the buckling stress of the T-section. The -additional
influence of this plate buckling stress can be taken into account in the
fo~owing manner: The torsional-flexuxalbuckling stress cl-p is first
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computed according to the interaction formula for
analogy to the derivation of equation (76) in the
“Buckling of I-Section in Direction Perpendicular
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this case. If, in
section entitled
to Plane of Web,”

this mode with al-2 is regarded as case (1), case (2) is represented

by the above buckling of the web clamped at one unloaded side @ free
at the other, with a correspondingbucklhg stress

a3” This is true

because such buclilingis the only defamation which could occur if the
column were infinitely rigid against the deformation of case (l). The
transverse bending of the flange msybe neglected. Hence, as willbe
shown in detail later, an interaction formula results which is again
approximated conservativelyby a formula shilar to equation (76). The
actual cotiined buckling stress is then given by

(119)

in which U1-2 =948 kilograms per square centimeter = 13,460 psi and

‘3
is the ~u=kling stress of a plate

side W free at the other (reference

l-i%
‘3=X [)l/p2 +

that is clamped at one unloaded

12).

i
0.125B2 + 0.5 (MO) .

where p = a/b = L/b. In this em.mple the width b of the web, which is
actually supported in the middle plane of the flange, is 30.5 centimeters,
(fig. 15), so that j3= 700/30.5 = 22.9, yielding, with v = 0.3,

( )527 fi2N
U3= &+o.57+T— ’

fi2N
66.472 —

b% b%

= 66.472
~~t3 “= o Oay

.

12(1 - v2)b%

= 0.0645 X 2,100,000 kg/cm2 = 135,500 kg/cm2

= 1,925,000 pSi

Hence from equation (119)

135,500
acr = 135,500 + 9~

948 kg/cm2 = 941 kg/cm2 = 13,36o psi .
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which checks
centimeter =

49

the exact buckling stress of 942 kilograms per square
13,375 psi found from equation (33).

It is seen that for this particular exsmple: (1) The interaction
formula, equation (1.19),is accurate within about 1/10 p&rcent, ad
(2) the interactionbetween torsional-flexurciland plate bucklhg
amounts to about 2/3 percent, that is, is negligible.

(b) If the flange has a relatively large torsional rigidity and is
much more stable than the web, as, for eqle, for the dimensions of
figure 16, the web is rather strongly constrained rotationally by the
flange. In this case the influence of plate buckling, with a bucldinn
stress cr3,is more pronounced, especially for small half wave lengths.

At the extreme, with a flange which is infinitely rigid, only pure plate
buckl@ could OCCU .

The deflection of the cross section consists here of a translation w1,
a rotation with respect to the shesr center S, denoted by the deflec-
tion W2 at the lower side of the web and a plate buckling of the web
with a maximum deflection W3 (fig. 17). The shear center may be

assumed sufficietily accurately to be situated at the intersection of
the middle planes of f-e and web. Again, the transverse bending of
the flange is negligible.

If od-y the deflection W1 occurs, that is, flexural buckling only,
the critical stress is

or in the elastic domain

This case will be called
(case (2)), the critical.

or in the elastic domain

At
‘1 =

(+y) 2

I?E

‘1 = (a/ry)2

(121)

(122)

case (1). If only the deflection W2 occurs
stress is (reference 10)

(reference 17)

(123)

(124)

—
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where Iy, G%, and ECW are

the torsional rigidi@, and the

NACA TN 26@

tti polar moment of &rtia about S,

warp- rigiuw, respectively. Equa.
tion (123) follows directly from equation (124) since in the plastic
domain, if during buckling infinitesimal shear stresses ‘v ‘ ‘e
superposed on pure compressive stresses, the ratio TW’ /7=’ between
excess shear stresses and excess shear strains, which is G in the elastic
domain, is replaced by EF (reference 3). Furthermore, in equation (124)
the elastic modulus E refers to excess bending
plastic domain it changes to the tangent modulus

The deflection of the web with a maxhnum W3

column were infinitely rigid with respect to the

stresses, so that in the

%“

(case (S)) would, if the

other deflections,
correspond to a critical stress in the plastic domain:

=4#EI Aa3=b
~ )

+ 0.125iD~2 + 1.8kF - 0.25B (125)

In the elastic range equation (125) reduces to equation (120). The
critical stress M the plastic domain according to equation (X25) may
be found by the ener~ method of equating the titernal work Vi to the
external work Ve, hence

vi = Ve (126)

in wlxLch(reference 3)

Assuming

w = w3p - cos (3ty/2b)J sin (xx/a)

equations (126), (127), and (128) yield

i

#EI A

)

— + o.138Dp2 + 2.2F - 0.3?3
‘3 = b% ~2

(128)

(129)

(130)
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.

This gives for the elastic domain, where, from equations (3),

A=D = 1/(1 -V2), B= V/(1 - v2), and. F= l/~(l+Vflj

with V = 0.3,

a3
( )

=h~+ o.138p2 + 0.68
b% 132

(131)

instead of the more-accurate value from equation (120). This is due to
the fac~ tht the energy method yields values which sze too high. Hence
equation (130) may be improved by ad$.mting it to the mode-accurate
known value in the elastic range. This is done by multiplying the coef-
ficients of D by 0.125/o.138 and those of B and F by 0.57/0.68. :
This is how equation (12~) was obtained.

Some years ago the first author derived the interaction formula for’ ~
the critical stress Ocr as expressed in terms of the critical
stresses Ul, up> and Uq for the component modes. This was done by

considering successively11) the equilibrium between external and internal
bending moments, (2) that between external and internal torsional moments,
for the entire column, and (3) the equilibrium between external smd
internal torsional moments acting on the web alone. This leads to a
system of three linesx homogeneous equations in WI, W2, and W3, from

which the buckl~ condition follows by equating the determirmnt of the
system to zero, yielding a cvibicequation in acr.

In order to check this equation, during the sumner of 19~Mr. C. D.
Maussart, the first authorts assistant at the Institute of Technolo~ at
Delft, Holland, calculatd acr exactly for the elastic range from equa-

tion (33), where al and ~ are given by equations (27), for the
T-section of figure 16 with b = 31 cent-ters, bt = 15 centimeters,
t = 1 centimeter, and. t~ = 2 centimeters. The freely supportd length
was aSSUD@ tO be 700 CentiJ.Uetersand Ucr wad Calculated for elastic

buckling in 1, 2, 4, 8, and 12 half waves and hence for half wave
lengths a of 700, 350, 175, 87.5, and 53.33 centimeters, respectively.
The exact critical stresses ucr “inpounds per square inch thus found

are plotted in figure 3 against the half w&e length a. In table 1 they
are given in kilograms per square centimeter as well as in pounds per
square inch under the column heading “crcr from equation (33).”

The stresses UIY up, and. G3 from equations (122), (124), and

(120) for the component cases (l), (2), and (3) are likewise given in
figure 3 and table 1. The above-mentioned cubic imteractiQn formula
ti Ucr was found to yield results which deviate less than 1 psrcent
from the exact vslues. This proved the accuracy of the method, but did
not yet provide a simple and direct way of computation, since the coef-
ficients of the ctiic equation me rather involved.
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In the following discussion simpler interaction formulas are derived
for this type of buckling and are checked against the accurate values &ram
equation (33).

In order to find explicit interaction formulas for the specific case
of P = pl (fig. 1), the critical stress ~2.3 will first be calculated

for wl = O, that is, for fixed shear-center axis, so that 02-3 follows

directly from a quadratic equation like equation (6o) in the section
entitled “Buckling of I-Section in Direction Perpendicular to Plane of
Web.” Since al is here very large (in fig. 3 for a = 60 cm), so that

a will be onQ slight~ smaller than U2-3, it will mibsequentlybecr
sufficiently accurate to express the interaction of a2.3 and al in

a simple formula of the type of equation (76). On the other hand, at
.~ = i32(fig. 1), hence, in figure 3 at a =600 centimeters, W3 is

first assumed to be zero, so that the critical stress al-.2 for flexural

and torsional buckling is obtained as interactionof cases (1) and (2).
Stisequently the small interaction between ‘l-2 and the very high plate

bucklsg stress
‘3

may again be expressed by a formula of the type of
equation (76).

Critical stress for T-section with fixed shear-center afis.- Although
actually the shear center is situated slightly below the middle plane of
the flange it is sufficiemlil.yaccurate to-as& the shear-cente~ axis at
the intersection of the middle planes of flange and web.

In a similar way to that done tithe section entitled “Buckling of
I-Section in Dtiection Perpendicular to Plane of Web” the entire section
is considered first. Since, however, twisting about the shear ads occurs
here instead of free bending, no equilibrium between bending moments can
be considered. The best procedure is to compare the moments about the
shear-ce?rteraxLs S of the deflecting and restraining forces acting on
a small slice of length dx of the column (fig. 18).

Assume first a deformation according to case (2) to occur which
corresponds to w2. At buckling the deflecting force -ta2(a2w/bx2)dxdy
acting on a small element t dx dy of the slice in the web is propor-
tional to a2 and to w, so that it may be denoted by ca2wt dy. Since
t dy represents a small element d& of the cross section of the column,
the deflecting forces on elements in the web as well as the flange may be
denoted by CU2W dAc.

Hence, since from fi~e 18 for case (2) the displacement w of any
point of the cross section is ‘w,ifr is its distance from S,g2
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the total moment about S of the deflecting forces acting on the slice
Ac dx is

Md2 =
J

ca2wr uc

=Zuw J’F (MCb 22

=~uw I
b 22P

(132)

where I is the polar mometi of inertia *out S.
P

Consequently the moment ~ about S of the restraining forces

acting on the slice, that is, of the transverse
in its end cross sections, is likewise

Assume now a deformation according to case

‘0 ‘3J fig. 18) or, b other words, assume the

rigid against a deformation of case (2). Since

shearing stresses acting

(133)

(3) al-me (corresponding
column to be infinitely

here the web alone
deforms; if this deformation were of “the ssme sha~ as in case (2) the
deflecting moment about S wouldbe given in equation (132), where ~
would be replaced by the pow moment of inertia ~w of the web
about S and a2w2 by a3w3. However, since with equal deflection

at y =b the deflection at other points is less in case (3) than h
case (2), the deflecting moment is slso less, so that here

‘d3 ~aw‘ab 33~W (134)

where a<l. The restraining forces are exerted here by shearing
stresses in both end sections of the slice but also by the bending
mometi % exerted by the flange on the web at its buil.t-inunloaded

edge. This is an internal moment so that it does not add to the
restraining forces acting on the slice as a whole. InequatZon (120)
for .3, % isaccoumted for bythe factor 0.125132. Omitting it for

. .. . ——._—— —— —————-
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the reasons just stated, the restraining moment

in which, from equation (120),

Hence,,
restraining

At the

)l/p2
q2 =

+ 0.57

(UB2) + 0.125P + 0.57

for this case is

with both cases
moment about S

(2) ad (3) OCC~@ simultmeously,
is

%=%2+%3

moment of buckling, with a buckling stress IJ2_3jthe

(135)

(136)

the

(137)

deflecting moment aboti S follows from equations (132) and (134) by
replacing a2 and U3 bY c2.3~ so that

Md=Mw+M d3

( +C
= U2-3 W2 + a )qw3K5

(138)

Hence from equations (137) and (138) the condition of buckling Md = ~
is given by the equation

(
IW

)

1P
02_3 W2 + m —

~ ‘3
= a2w2 + a — ~3u3w31P

(139)

In order to obtati a second equation in W2 and W3 the equilibrium

of a slice bt fix of the web alone is considered by comparing again the
moments of deflect- and restrainhg forces about S.

.
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If a deformation according to case (2) alone occurs, the critical
stress of the web is, analogous to equation (124) for the entire section,

where the second @script w refers to the web. The deflecting. .
moment, using
would be

which follows

by a- and

the same proportionality factor as in equation (132J,

(140)

directly from equation (132) by replacing a2 and ~

~w. Hence the restraining momerttti this case is M&wise

(142)

With a defamation according to case (3) alone the deflecting moment
is alxeady given by e@ation (134). Since at this stage the equilibrium
of the web is considered, the restraidng moment ~ exerted by the
flange must also be taken into account, so that now the moment about S
of the restraining forces acting on

‘0 ‘d3 in equation (134)

whence the total

At the moment of
moment about S
u% and Cr3 by

~3w = a

restraining moment

~=h$m+

=
(
G*W2

a slice bt dx of the web is equal

~aw I
b 33pw

(143)

K@

)
+ aa3w3 ; $W (144)

buckling, with a buckling stress U2. , the defletting

7follows from equations (142) and (143 by reyl-acing

~p-3J so tmt

..— —— 1—. ———. _—.
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%? = ‘W + ‘d3

= a2.3(W2 + ‘3) ~ %

Hence the condition of buckling

‘dw ‘%

is here

( 3)‘2-3 ‘2 + ~ = umw2
+ ‘3W3

Collecting terms in W2 and W3, equations (139) and (lk6) become

((72 - “2-3)W2 + (q3C3 - ‘2-3)~w3 = 0

(
U* - cr2-3)w2+ (.3 - .2-3)m3 = o

1

where

(145)

(146)

(147)

(148)

The buckllng condition is obtained by equating the determinant of
equations (147) to zero, from which

where for the elastic range u2,“ a3, Uw, 73, ~d ~ are gi~n ~

equations (124), (MO), (140), (136), and (148), respective~. me

‘iress ‘2-3 has been calculated for the T-section of figure 16 for

several half wave lengths a. The result is given in table 1 and

.- . —
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figure 3. It follows clearly from figure 3 that U2-3 approaches U2

fez’larger wave lengths, where ‘3
is very high.

Buckling stress of column with T-section for p% PI (fig. 1).-

In order to find the real bucklsg stress Ucr the influence of a
deflection W1 of the column (fig. 17) has still to be considered.

Since for P = PI (fig. 1) al is very high, this influence is rather

small. The stress Ucr will be calculated from the interaction of
case (1) with deflection wl (fig. 17) and the combined case (2-3),
considered in the previous section, with a buckling strebs ‘2-3 ‘d
a deflection W2-3 (fig. 19).

This case is similar to that of the I-beam in the section entitled
“Buckling of I-Section indirection Perpendicular to Plane of Web.”
Considering first the equilibrium between external cud internal moments
analogous to equation (kO) the internal moment from the deflection W1

from case (1) is here

(150)

Analogous to equations (43) and (~) the internal moment from the

.

in which

deflection W2-3 of the web would be found here as

%(2-3)= %q”2-3Vw2-3

’32C
v=—

‘2-3

where U2C is given by equation (41). The average deflection
web from case (2-3) is VW2 ~. However, this internal moment

(151)

(152)

of the

‘i(2-3)
is somewhat ambiguous. In case (2), where a.pure rotation of the section
with respect to the shear center occurs, according to the definition of
the shear center no internal bending moments will originate. But equa-
tion (151) indicates internal moments for this case. This is a consequence
of the fact that the center of shear S was assumed at the intersection
of the middle planes of flange and web, while in reality it is slightly
lower. Therefore it is better and safe to neglect ‘i(2-3) here, the

more so since it is extremely small in comparison with ~1 from equa-
tion (150). Hence

—— —— ...—— ——.
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~ = Mu = Ac~lWl

With actual conibinedbuckling the external moment

%i = Acucrwl

From w2_3 analogous to equation (1>1)

To find v it is noted
where the cross section

‘e(2-3) = &Uctiw2-3

NACA TN 2640

(153).

resulting from WI iS

(154)

(155)

that for a deflection of the web from case (2).
remains straight, the average deflection

W2 = 0.5w2, so that P2 = 0.5. For case (3) the cross-sectional distort-

ion of the web may sufficiently accuratelybe approximatedby that of
a cantilever beam with uniform load q (fig. 20). Thus

M= -~q(b -y)2

w=- JfMdydy

+( )4- kbys + 6b~2
‘2 Iy

so that w ~4~d
3
= (w)y=b = ~1 b

.

Hence

Thus in equation (155)

YWdy
o

P3 ‘ bw = 0.4

3

‘3
(156)

(157)

(158)0.5 >11 >0.4
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From equations (154) and (1.55)the total external moment is

~ = ‘el + %(2-3)

(159)

.
or with the notation

Hence from equations (153) and (161), since ~ = Ml

acr~l + @2-3) ‘ ‘lwl

(161)

(162)

Next, in the same way as in the section entitled “Buckling of
I-Section in Direction R?rpendicular to Plane of Web,’:a second relation
is obtained by considering deflecting and restraining forces acting on
an element t dx dy = ~ dx of the web. If only case (2-3) occum the
deflecting force may be written as cU2-3w2_3 so that, analogous to

equation (52), the reStraidQg force in that case is also

‘2 = CU2-3W2-3 (163)

If only deflection W1 occurs, the deflecting force is cyU2cwl>

where Y accounts for the fact that with equal maximum deflection at

Y = b, a larger average deflecting force results with w = W1 = Constant

than with a Wiation of w with y as in case (2-3). A good measure
of this influence is the moment of the deflecting forces with respec’t
to s. As a matter of fact, this means that the moments about S of the
deflecting and restraining forces acting on a slice bt dx of the web
are considered and equated. Denoting the deflecting forces on an
element ~ dx by kow ~, the ’deflec%@gmoment is for case (1)

=> 0.5kb%wl (164)

—.—.—— —.._— —— ——- __——
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For case (2), where w = ~ W2,

= O.333k@%w2

For case (3), where w is appro@nmtely given

M =kcr
3

r
w%

o

= o.28gti2tuw3

Hence from equations (tik), (165), and (166)

NACA TN !Z@O

(165)

by equation (156),

(166)

0.5 0.5
0.289 ‘7 ‘0.333

or
.

1.73 >7 >1.5 (167)

Thus analogous to equation (%), the restraining force R1 = D1 or

RI = cyu2cw1 (168)

so that the total restraining force is, from equations (163) * (168),
R =R2+Rl or

R = c~2.3w2-3 + cYa2cwl (169)

or from equation (152)

R = CC2-3(W2-3 + ~~~ (170)

With actual combined buckling the deflectlng force is cacrw2-3
for case (2-3) and c7ucrwl for case (1), so that its total is

D= cUcr(w2-3 + ml) (In) .
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Hence from the equality of D and R

Collecting terms with
become

(
al -

(
Y ac~

‘1 W ‘2-3 in equations (162)

)‘cr ‘1 - @OcrW2_3 = O

)- q“2-3~wl - (02-3 - ‘cr ‘2-3 = 0

These equations are nearly identical with equations

61

(172)

and (172), they

}

(173)

(59). The only
difference is that here W2-3 occurs instead of W2, and that in the

first of equations (173) ~ has been equated to zero because %(2-3)

from equation (151) is negligible. l&om equations (173)

“Cr=+’+(’-ti’)”=-
Here ~ is given by equations (152), (41), and (149), while from
equatio~ (158), (16o)~ and (167) one can ody conclude

(174)

(175)

To decide which value 7@ to use it is noted that Ucr is the smaller

the larger @. (The quantity 7@ is an interaction factor, which is
equal, for example, to unity in the case of sandwich plates). Hence a
safe and only slightdy conservati= value is

(176)

In the same ~ as was stated in elaborating equation (60), con-
servative and sufficiently accurate values of Ucr are obtained if q
is equated to zero. With q = O equation (174) is identical in form
with equation (6o), if a2 is replaced by u2-3. Hence, for the

.—.—.. _— _ ———.— ——. ..—
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particular

tion (174)

case of P = pl, that is, for very large al (fig. 1) equa-

may he written, in analogy to equation (74), as

ul+(l- 7$$)U2-3
acr = ‘2-3

‘1 + ‘2-3

or more simply and conservatively, analogous to equation (76), as

al
‘cr = ~

1 + ‘2-3
‘2-3

(177)

(178)

Here al is given by equation (122),
a2-3 by equation (149) and

@ by equation (176). For the particular section of figure 16

Y@ = 0“75 % = 0“25”
(comparing equations (177) and (178) it fo~ows

that the sandwich-plate formula (reference 1) is indeed obtained if the
interaction factor y@ = 1.)

In table 1, acr is cmputed for the T-section of figure 16 from
equation (177) as well as from equation (178) and given under the
head~s “acr from equation (177)” and “Ucr from equation (178),”
respectively. Comparing these values of acr with the exact values
obtained by using equation (33), it is seen that the governing value
of acr, that is, for P = B1 (fig. 1), correspond= here to a value a

of about 58.33 centtieters, may be computed more accurately from the
simpler formula (178). me retits from equation (178) for a = 58.33
and a = 62 centimeters are indicated in figure 3by circles, and ae
seen to fit almost exactly the exact curve for. acr. For a = 87.5
and a= 135 centimeters, the more-accurate equation (177) has to be
used, since here the difference between acr w 02-3 becomes more

@)ortant . However, in these cases acr for buckling in one half wave
has no practical value, since buckling in more than one half wave results
in smaller buckling stresses. The resulting values are indicated in
figure 3 by crosses. The a~eement with the exact curve is excellent.

Computation of critical stress al-2 for flexural and torsional

buckl.m of T-section.- Although the more general derivation of al-2

according to the method of split rigidities was given in reference 10,
the pertinent critical stress for the special case of a T-section will
be derived here direqtly. In a computation of flexural and tor~ional
buckling it is assumed that no distortion of the cross section takes
place. Hence only deformations according to cases (1) and (2) occur,
while in an approximate sense the column is supposed to be infinitely
rigid against a deformation from case (3).

—
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The bending with respect to the Y-axis is considered first.
case (1) occurred, a deflection WI would cause an external

moment AcU1wl, so that this deflection entails an internal moment

63

If

Mil =&alwl (179)

Since it is a property of the shear ceder S that a rotation with
respect to S yields a torsional mometi only and no flexural moments,
the internal flexural moment from case (2) is zero. Hence the total
internal flexural moment is

% ‘~= AcU1wl (180)

The external flexural moment is found by multiplying the critical
thrust Acal-2 for flennxd and torsional.buckling by the displace-

ment cc’ of the center of gratity C. From figure 21 this is equal
Yo

to wl + ~ W2, so that

Equating 1% and Mi yields the condition

alwl

(181)

(182)

Torsion with respect to the center of shear S is next considered.
Here a slice of length dx of the column is considered, as under the
section entitled “Critical Stress for T-Section with Fixed Shear-Center
Axis,“ where it was found in equation (133) that for case (2) the moment
with respect to S of the restraining zorces acting on the slice dx
can be represetied by the formula

Again, from the definition of the center of shear it follows that the
deflection WI from case (1) causes no internal torsional moments, so
that the resisting moment as above defined, for the combined cases (1)
and (2), iS

—..— — .—.—
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From equations (132) or (183) it follows

‘iress ‘1-2 the deflecting forces from

moment

NACA TN 26U0

u2w& (183)

directly that at the critical
the deflection W2 cause a

‘d2 = ; ‘1-2w2~ (184)

From the second metier of equation (132) the deflecting moment from WI
is found as

r’

= CU1.2W1ACY0

so that the total deflecting moment is

( 5,= CU1_2 ACYOW1 + ~ W2

Equating Md and ~ yields

(
ro2 ) r.2

al_2 Yowl + 7W2 = up ~w2

or “

“4%W1+WJ‘“2W2
Collecting terms in equations (182) and (187),

( ) Yo
‘1 - q_2 W1 - ~ c11_2w2 = o

by.

(~ ‘1-2W1 - ‘2
- u1_2)w2 = o

1

(185)

(186) -

(187)

(188)

.
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from which

.

al-2 =

.

,.

where y. is

65

W%d’+“2-‘k’-“2)2+4a’”&02’rO“8’)
the distance.between the centers of gravity and shear and

r. is tfiepolar radius of .~ation about S, while al and U2 are

given by equations (122) and (124). For the T-section of figure 16
U1-2 is given in table 1 and by the curve U1-2 in figure 3.

Buckling stress of column with T-section for P 2PP (fig. l).-

For p ~132 the critical stress a3 for case (3) is very high (fig. 3),

so that the exact critical stress Ucr will be oriLyslightly lower than

al-p“ Hence it may be expected that the sandwich formula, where

100-percent interaction is involved, protides a sufficiently accurate
and safe approximation, so that ‘Ucr may be calculated from the formula

u ‘3
cr = U3 + cl-’ %-2 (llg)

Indeed for a = 700 centimeters, where from equation (33) the exact value
of the buckling stress is 1880 kilograms per square centimeter = 26,700 psi,
equation (119) yields Ucr = 1883 kilograms per square centimeter
= 26,7~ psi. .~s value as we~ as twt for a = 620 cent-ters is
also given in table 1, while in figure 3 both values are indicated by
circles and fit the theoretical curve of acr exactly.

To check the method of calculation in general, ucr will be
calculated more accurately. Considering first the bending moments in
the column with respect to the Y-axis, accordingto equation (153) in the
subsection entitled “BuclEMng Stress of Column with T-Section for ~ % f31
(fig. 1)” the total internal.mometi is

The
is,

~ = ~u~w~ (190)

total external moment by deformation according to cases (1) and (2)
analogous to equation (181),

(%(1-2) ‘Acacrwl+%w2 )
(191)

-.—. —— .—.. .—— —-—
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In equation (157) in the midsection mentioned above it was found that
in case (3) the average deflection of the web is

f
V dy

oV3W3 = b = 0.4W3

so that for case (3)

Me3 = ~a~r(0”4)w3

yielding a total external moment

‘e = ‘e(l-2) + %3

( Y. %
=AcUcrwl+7w2+0.4—w

)43

(192)

(193)

In order to l~t to two tbe mmiber of unknown deflections and thus the
necessary number of equations and the degree of the buckling condition
it is observed that from equation (182) of the preceding subsection

Yo q
——wl+yw2–a12wl

so that, with the notations

‘1-2

%
19=A—

c

equation (193) becomes

Hence from equations (190) and (196)

(194)

(195)

(196)

(197) -
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Next a slice bt dx of the web is considered. from equations (164),
(165), and (166) of the subsection entitled “Buckling stress of a column
with T-section for D m Bl (fig. l)” the moments aboti S of the

deflecting forces acting on the slice may be represetied as

% = o.333h%m 2
(165)

M3 = 0.289kb%uw3 (166)

for cases (1), (2), and (3), respectively. The internal moment origi-
nating from a deflection W1 of the web is negligible for the large
half wave lengthat f3ap2. If only w2 occurs, the buckling stress

is U% from equation (140), while with W3 alone, it is U3 from equa-

tion (120). These stresses result in deflecting
equations (165) and (166), msy be denoted as

M& = 0.333cd2WW2

moments, which, from

(198)

Md3w = 0.289C03W3

respectively. Hence the total restraining moment is

% = ~% + Mr3w

= ‘d2w + ‘d3w

or

Mm = C(0.3331Ja’2 + 0.289U3W3)

(199)

(200)

Shnilarly from equations (164), (165), and (166) the total deflecting
moment with actual buckling may be represented as

‘dw = Cucr(0.5wl+ o.333w2 + O.28%3) (201)

—— — — —-————
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.

so that from equations (200) and (201)

,.‘.,

(0.5W1 + O. 333’W2+ 0=~*3).acr= O. 333a~w2 + O.289c3v3 (202)

From equations (194) and (195)

W2 = ((L - l)% WI (203)

On the other hand, the position of the center of gravity C (fig. 21)
is determined by the equation

so that from equation (195)

b A= 2
—=
Y. 2~=F

(204)

.

and from equation (203)

a -’ 1
‘2=2 e ‘1

(205)

Hence from equation (202)

[ )
cr 0.5 + 0.667 ~ WIu 1 ~ U%wl + o. 289U3W3+ 0.289w3 = 0.667 u ~

(206)

Collecting terms h WI and W3, equations (197) and (206) become

(‘1 )-acr ‘1 - o.48acrw3 = o

{
1.33(a - l)a~ - [G + 1.33(a -

)
1

1)]Ucr WI + 0.5789(U3 - Ucr)W3 = o

(207)



NACA TN 2640

from which
.

1
2(1.33 + O.lla - f3)1.b(u~-2+ U3) - 1.33(a - l)U* -

69

([ (l.k cl-z + G3) - 1.33(U - 1)cim]2 }- 5.76CilU3(1.33+O.IJ me)

(208)

in which a and e are givenby equation (195). Using,in equation (70)
the first term cnly, equation (20!3)simplifies to

G ‘3
cr =

U3 + q-z - o.,2,.m~ - (.@l)] “1-2

(209)

which results consermtively in equation (119) as given before; that is,

a3
~cr = ~l_2

‘3 + ‘1-’
(1-19)

for a =
stress ocr has been calculated from equations (208) and (119)
350, 620~ ~d 700 centimeters, respectively, and ie denoted in

table 1 by “ucr from equation (208)” and “ucr from equation (119),”
respectively. It is seen that for a = 620 and 700.centtieters,where
Ucr is the goverdng stress, equation (1119)yields even more exact
results than equation (208). Its values are indicated in figure 3 by
circles. For a = 350 centimeters, where the differencebetween ul_2
and Ucr is much larger, equation (208) gives accurate results, while
equation (119) is somewhat too conservative, as could be expected. The
value for ucr from equation (208) for a = 350 centimeters is indicated
by a cross in figure 3.

Buckling’of Angles with Equa.1Legs

For reasons of symmetry the legs do not rotationally restrain each
other, so that the exact buckling condition for this case is given by
equation (34). On the other hand the buclcllngstress for flewal and
torsional buckling (reference 10) is given by equation (189). To illustrate
the use of the interaction formula, the exact and the approximate buc~ing
stresses will be computed for a specific example.

Assuming a steel angle with a length L = ~ inches, a width
b = 2 inches, and a thickness t = 0.1 inch, b/t = 20, SO tht it

—. ——.— ———
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buckles in the elastic domain. The flexural rigidity B of a flange
against bend= in its own plane, for use in equation (27), is here

Eb%/3 instead of Eb%/12, since the sxial strain Cx from the deforma-

tion by bending, which results in the deflection W1 (fig. 22), is here
zero for the fibers at the shear center axis S. By trial.and error
equation (34) yields the exact buckling stress ‘cr = 0.0008~ (refer-
ences 7 and 8).

b the approximate equation (189), as applied to this case, al is

the critical stress for flexural buckling about the Y-axis (fig. 22),
since with torsional buckling of the section the center df gravi@
displaces in the direction of the Z-axis, resulting in bending about
the Y-axis. The stress IY2 is given by equation (124).

Since the flanges are not rotationally restrained, they remain
practically straight in cross section, so that, in contradistinctionto
the case of the T-section in the section entitled “Buckling of Colunms
with T-Section,” case (3) does not occur here.

For an angle, y. = b/(2@) and 1P = 2tb3/3, so that

ro2 = ~/(2bt) = b2/3 and yo2$02 = 3/8. Henc~ equation (189) for

the case”of an angle rtiuces to

CTcr [
=0.81Sl+U2- (zLo)

With ~ = (1/12)(t@)(b@)3 = (1/3)b% and ry2

tion (122) for the ~icular angle quoted above,

fi2E
‘1 = = o.oo4m

(airy)2

-1

= (1/6)b2, from equa-

with a = L,

2 bt3, while the last term is negligible,From equation (124), with ~ =3

% E t 2=0.000962z
4)

~2=G— =20 ~
1P

so that from equation (210) acr = 0.000879E. This is in close agree-
ment with the exact result Ucr = 0.000875!3 from equation (34).
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Buckling according to the considered mode governs only if it yields
smaller critical stresses than for buckling of the angle with respect to
its minor axis. For the latter mode the interaction is negligible and
the pertinent moment of inertia is

and hence Iy/4j so that the column buckling stress is ul/k = O.OO1O3E.

Since this value is higher than that previously computed,for torsional
buck.li~, acr = o.OO0875E governs.

THEORETICAL RESULTS

Comparison between the exact and approximate methods of calculations
leads to the conclusion that the interactionbetween column and local
buckling may be computed very accurately by the &thod of split rigidities
in the following manner:

(a) For columns where the web plates we supported at both unloaded
sides, such as columns with I-, H-, or box sections or with channels, for
buckling in a direction perpendicular to the web or webs the interaction
between column and local bucklimg is always practically negligible. As
a way of estimating roughly the effect of the interaction, formula (93)

.

may be used, which states that a== is at most about 3(~/Ac)[6/(r/t~2

percent less than the column or plate buckling stress, 61 or
()‘2 ~n~

whichever is smalder. The total cross section of the web or webs located
perpendicular to the direction of buckling is ~. The total cross

section of the cclumn is denoted by Ac. The radius of gyration referring

.

to the above-mentioaed direction of buckling is
thiclmess.

critical stress acr
more directly. For

‘cr =

may be calculated
P = P1 (f% 1)

al + (1 - @)u2

al + U2 ‘2

r, while t is the web

from equations (74)

(74)

where al and a2 are the column and plate buckling stresses, respec-
tively, for the considered half wave length of buckling. ‘lhis half wave
length has to be chosen such as to make acr a minhwn. It can practi-
cally always be taken equal to the half wave length that makes a2

.—. — —-



72 NACA TN 26@

:minimum. The value (a&)ti thus obtained governs as long as ~ is

smsller than about 132(fig. 1).

For P ~ ~2

u2+ (l-
a

7@ al=
cr

where both al and 62 have to

equal to the effective length of
O.75Aw/~ . More conservatively,

CL2 + (q
ul (75)

.

.
be calculated for a half wave length

the column. The value of 7’@ is about
in general

alu2
acr =

% + ‘2

( )-l+ a-l-l= ‘1 2 (76)

Emtiom (74), (75), and (76) obtain also for the plastic domain,
if the plastic vslues ~/E, A, B, D, and F from equations (36)
and (2) are calculated for the actual buclding stress acr. Moreover,
equations (74)~ (75), md (76) apply for buckling in the plane of the
web for columns which are symmetrical with respect to the web, as for
exsmple H- and T-sections. In that case U2 refers to the plate buckling

stress of the flanges which, for the considered direction of buckling,
behave as plates which are free at one unloaded side and clamped at the
other. Tn this case 7@ is about O.7Af/& where Af is the total
cross section of the flanges.

In all above-mentioned cases the interaction is practically always
negligible.

(b) The interactionbetween column and plate buckling is @orknt,
however, if the pertinent plate subtends a significant angle to the
direction of buckling and is elastically rotationally restrained at one
side and free at the other side, such as in T-sections and angles. In
this case a codxination of column buckling and twisting occurs. This
follows directly from the conservative formula (76), because in this
case both the flexural and torsional buckling stresses al and U2

have their smallest value for the largest possible half wave length,
that is, the effective length of the column. For many practical sections
these two stresses,are of the same order of magnitude. For example,
with al = a2, equation (76), though too consemtive in this case, yields

‘cr = 0.5al = 0.5CT2,which shows how significant interaction can become.
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If the plates do
as in T-sections with

not restrain each other significantly
rather weak flanges or in angles, the

is rather accurately accounted for by
and torsional (plate) buckling. Then

U~r = ‘-F’+ ‘2 -

73

rotationally,
interaction

the formulas for-flexural (column)

where
al - ‘2

are the column and torsional buckling stresses,

respectively, both calculated for a half wave length a equal to the
col-m len~h L. The stress al refers here to buckling in

Z-direction (figs. 17 and 22). In particular, in the elastic

l%

‘1= (a/ry)2

and

( ~2
=~G~+ECw7

‘2, 1P a-
)

the

range

(122)

(124)

where I
P’

G%, and lKw are the polar

shear center S, the torsional rigidity,
respectively.

In the plastic range

moment of inertia about the

and the warping rigidity,

.

where F is given by

Values ‘o and

of ~tion about the

I?E.
(121)

(123)

equation (2) and

Yo in the above

shear center S

Et is’the tangent modulus.

equation for ‘cr are the pcLar radius

and the distance between shear center

.— —— -—
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and center of gravity, respectively (figs. 21 and 22). This buckling
stress acr governs only if it is smaller than the column buckling

stress for buckling in the Y-direction (figs. 17 and 22), for which
case the interaction is practically always negligible.

If the web of a T-section is substantiallyrotationally restrained
by the flange the critical stress has to be calculated from equa-
tions (178), (149), (119), and (189). For j3=Pl (fig. 1)

(q

a=-= al + tJ2_3 02-3

where

(178)

while

I?E

~1 = (a/ry)*

( 3?)&~+~w~U*=l

w

l-r%1(‘3=—— )
+ o.125p2 + 0.57

b% p2

q3 =
(l/B*) + 0:57

(l/Pa) + 0.125132+ 0.57

(122)

(124)

(140)

(120)

(136)

(148)

.
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The second stiscript w in equations (140) and (148) refers to the web
alone.

In the plastic domain

+
u –—

1- (a/ry)2

( ~2

)
a2=5F%+E#w7

I?EI A

(

a3=T _

)
+ 0.12~~2 + 1.84F - 0.25B

bt $2

(121)

(123)

(125)

while instead of equations (140) and (136)

(A/132 + 1.84F - 0.25Bq3 =

(A/p2) + 0.125D132+ 1.84F - 0.25B

All plastic values ~, A, B, D, and F refer to the actual buckling
stress Ucr. The latter four values are given in equations (2).

The stress crcr from equation (l@) has to be calculated for that
half wave length a = Pb for which it is minimum. This is practic~
the half wave len@h for which U2_3 iS ~. The value (Ccr)ti

thus obtained governs up to about a value j3= a/b = p2 (fig. 1).
For P ~ ~2

a3
‘cr =

~3 + q-p
q_2 (llg)

.

——. .. . . . ——— --
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where

[
‘1-2 = 2F - (:.%.31“1

+u-2

while al> 02> and a~ are given by
or equations (121), (123), and (125),
respectively,

are the polar
tance between

EX
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1

and are calculated for-

equations (122), (124), sad (120)

for the elastic or plastic domain,
a = L. The symbols r. and y.

radius of gyration about the shear center S and the ~s-
shear center and center of gravity, respectively (fig. 21).

Square tube
mi.mm tiOy with

PER IMEI?TAL IN VEST I

STRESS-STRAIN TESTS

Description of Specimens

GA TION

specimens used for this series of tests are 6B -T6 alu-
the following ncmdnal dimensions:

2 by 2 inches by 0.063 inch designated “B”

~ by ~ inches by 0.047 inch designated “D”

All tubes are special drawings of the Aluminum Company of America with
square corners and slight thickening of the walls on the inside near
the corners.

Deviations from flatness, straightness,and squareness are well
within tolerable l~ts, ficreasing as expected with wall width and
diminishing wall thickness. The “D” tties, in particular, show rmdmum
deviation from squareness of about 5°, from flatness e@l to the wall
thickness, and a twist not exceedimg 5° per 15 feet of length. One-
thtid of the specimens are thus affected. Deviation from straightness
is negligible. Variation from nominal wall thickness for dl tnibesis
0.0010 to -O.00k0 inch.

Instrumetiation

In order to determine the compressive stress-strati chs&cteristics
of the tube material, it was necessary to prevent premature local buckling
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of the tube wall. The walls were supportedby blocking inside and out-
side, such that the unsupported portion of wall had a b/t ratio not
exceeding 12.5. Ascertainable buckling was prevented at least as far
as a strain correspondingto a secant modulus of O.w.

The external blocking arrangement consisted of three square clamping
frames which held vertical steel supporthg blocks one against each face
of the tube, as shown in figure 23.

Small internal clearance of the tubes made it necessary to design
a special expmding fixture operable from the ends of the specimens.
The device, consisting of two suppotii& blocks and the screw-driven
wedge system, is shown in figures 24 and 25. The range of expsnsion is
about 1/4 inch, reqtiing the use of auxiliaxy blocks for the larger
tubes. Figure 23 shows the expansor as applied to a specimen.

Strain measurements were made with SR-4 electrical resistance
strain gages, type A-1, in connection with standard Wheatstone bridge
strain recorders of both Baldwin and Young manufacture. Eight gages
were used, two to a face outside the supporting blocks, located near
the corners at the midlength of the specimen.

Test Procedure

All stress-strain specimens were 8 inches long to avoid end effects
and to provide a convenient size for handling. Nearly perfect flatness
of ends was obtained by squaring and sanding of the sawed specimens on
a disk sander, followed by hand-lapping on a surface plate with oil and
emery.

The internal expansor, sliglrt& shorter than the spectien, was
inserted first with necessary auxiliary blocking, and centered on the
length of the ttie. All block surfaces contacting the tube were
lubricated with medium-weight cup grease to avoid frictional restrai.n%s.

The etiernal blocking was next applied. The steel supportingblocks,
lubricated with cup grease, were centered vertica12.yand laterslly,
supported at the base on sponge-?xibberpads, and held h place by the
ce~er clamping frsme. All.blocking was then drawn up to the tube, a
light seating load was applied, and the other two clampm [frames set
in place.

Preliminary tests were made to check the effect of varying clamping
pressures. On the basis of these tests, it was decided that slight
clamping pressure correspondingto a qusrter-turn tight on all screws
would not be detrtiental. More than this showed definite gage “lag” in
repeated load cycles, while less resuited in premature local buckling.
The pressure so selected was used in all tests.
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Centering the specimen, that is, providing umiform stress distribu-
tion, was perhaps the most difficult and ~rsistent problem encountered
h this series of tests. To correct for nonpa.ndlelism of ends and/or
machine heads, use was made of tissue ~aper shhs 0.0015 inch thick
slipped between the upper machine head and the corners of a hardened-
steel bearing block on the upper end of the specimen. Shims were applied
or relocated umtil strain readings on the eight gages showed a total
high-to-low deviation of less tham 3 percent. Usually it was possible
to hold t~s to le$s t~ ~ perceti at each of three widely separated

loads in the elastic range.

Beyond this point no unusual problems were encountered. During the
stress-straintests precautions were taken to observe closely beginning
of buckling and adequacy of the blocking and to keep a running load-
strain curve.

s~ of Stress-Strain Data

Eight stress-strain speclnens involving the two sizes of tube have
been tested. Representative stress-strain curves sre presented in
figwe 26. Comparison of the test results showed consistent and similar
characteristicsfor ths two sizes of tube, with negligible deviation
from the average for each series, azyield stretisof about ~,000 psi,

and an elastic modulus of 10.7 X 10b psi.

In the course of testing, 23 stress-strain
sizes of similar ttiing were run, and they gave
sistemt with those of the “B” and “D” series.

tests on three other
results completely-con-

As a further check on consistency of re-tsj the Re.mberg-Osgood
formula (reference 18) was used for comparison wi~h the experlmetial
data and found to agree almost exactly with the average of the “B” and
“D” series. In addition, the curves of worst deviation from the average
were calculated and compared with the group average for stress-strain
characteristics,tangent modulus, sad secant modulus. In all cases the
agreement was quite favorable.

COLUMN TESTS

Descri@ion of Specimens

The two sizes of square ttie specimens used for this program are
described under “Stress-StrainTests” and were chosen so as to have the
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critical plate buckling stress fall in the plastic range for one series
(“B”) and in the elastic range for the other (“D”). Specimens were
selected to cover a wide range of L/r ratio, encompassing the interaction
specimens; that is, those specimens for which the critical plate-buckling
stress and prim~ column-buckling stress are identical. The interaction
spectiens in this instance sre those designated I in tables 2 to 4 and
have a ratio L/r = 45.95 for the “B” series and L/r = 85.80 for the
“D” series. Including duplicate and triplicate specimens, 14 “B” columns
and 7 “D” columns were tested, as given in tables 2 to 4.

Procedure for Determining Effective Length of Interaction

Column with Box Section

(1) For series “D” specimens for which plate buckling stress cr2 is

in the elastic ramge: For the interaction colum,

It%+—= 3 .62~~)2
(L/r)2

from whence L/r = 1.6%/t where b is the plate width cerrter-to-
center of adjacent plates.

(2) For series “B” specimens for which plate buckling stress U2 is
in plastic range: The length of the interaction spectien should-be such “
that

(a) Given the stress-strain curve, compute the curve for plastic
buckling stress a~ as follows. Assume several values of a~ ti

for each cslculate the parameters Et) %>. and

‘2p/”2e = 0.455(~ +B + 2F), where U2e is the elastic plate buckling,

(See reference 4 table 5.) The parameters A, D, B, and F
~~~&nby equations (21. Further, compute for each selected value of
a% the corresponding value of a2e/E according to the relationship

~=*” This establishes a point-of the required curve

am against U2e/E for each valti of a~ selected.
.

.

..—— ————- —-– ——
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(b) Hav5ng found the curve for era, calculate

a2e ot2— = 3.62 ~
E

With this value as abscissa, pick the cOrreSpOti@ am from the c,~ve~

and the correspndm ~ to the stress-strain curve at that stress.

Then calculate the required L/r ratio as defined above.

(c) The curve for
aa

may be plotted on the same ‘coordinatesystem

as the stress-strain curve, as shown in figure 27.

It wiIl be noted that ~ and a~ are interdependerrb,which

necessitates the trial-and-error procedure as given in order to find the
“valuessatisfying the interaction criterion.

Since u2e/E is immediately known and

usually nesr to the stress-strain curve, it
the values of U@ that narrowly encompass

the curve for
‘2P ‘s

is necessary to select od.y
the stress corresponding

to this value of u2e/E.

(d) The specimen length
length just computed for the

m~ be determinedby correcting the effective
psx%icula end-support conditions used.

Instrumentation

In order to study properly the interaction of local and Euler
buckling, it was necessary to develop means of measuring separately the
two -S of buckling. It was felt that electrical.resistance strain
gages on the column faces would not accomplish this by virtue of
difficulty h “SOrt~ OUt” the proportionate effects of the two types
of deformation. In terms of mechanical gages, it was recognized that
a device to measure plate deflections due to local buckling must be
attached to and “ride” with the column during prtmary deflection in
order to exclude the effects of the latter. The primary column deflec-
tions =e measurable by any one of several simple detices referred to
the ends of the column.

A collar to fit on the column and carry a local buckling gage without
affecting the local buckling characteristicshas been develowd.

The local buckling gage developed for these tests shown in figue 28
is based in principle on the type of gage described in reference 20 and
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has the advantage of being ~ependeti of buckle location. It makes use
of a suspended blade ti cotiact with the column face and measures the
blade movement resulting from buckle formation by means of dial gages.
(The gages were Federal No. C21 with O.0001-in. divisions and 0.3-in.
range amd were full-jeweled.) The blade suspension is 1/2 by 0.002-inch
stainless spring steel, combining high resistice to breakage and
negl~ible blade restraimt.

Gages of this type were applied (at two different levels) on the
column faces parallel to direction of primary buckling in order to avoid
effect of primaqy curvature of the column.

Ner deflections were measured by nwans of O.001-inch dial gages at
midlength and both quarter points, in cotiination with a O.01-tnch
division scale at midlen@b read simultaneously for correlation with
reset readings of the dial gages and for large deflections beyond the
range of the dial gages.

Columns were supported at the ends by lmife edges, with appropriate
adjustment for centering. Carboloy lmife edges, with corresponding flat
besring surfaces, were loaned by the National Bureau of Standards.

A general view of the testing arrangement is given in figure 29.

The ends of all columns
a manner similar to that for

The centering procedure

Test Procedure

were squsred, sanded, and hsad-lapped in
the stress-strain spscimens.

made use of both strati readings and lateral-
deflection readir&~ Eight Tuckerman optical strain gages ~ere applied
to the corners of the column at two stations, generally 12 to 15 inches
outside the upper and lower quarter points, and always at a distance
from the ends of at least twice the plate width to avoid end effects.
The two sets of strain readings made a simple matter of determining
required centering adjustments and in particular of deciding whether
eccentricities of the column ends were in the same or opposite directions.

Final centering, at aboui two-thirds of the predicted critical load,
was done by adjusting”the column ends until lateral deflections at mid-
length and both qusrter-pointswere negligible, and then making a final .
check of strain distribution. Centering by deflection proved to be
,considerablymore accurate thsn strain readings for the final adjustmeti.
Differences in the average strain on opposite faces of the column were
held to a maximum of 1 percent in the dtiection of primary buckling and
two percent in the other less critical direction..

.

.
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Local buckling gages were then
the test proceeded by reading local
increment to failure.

applied to the centered column, and
and Euler deflections at each load

Evaluation of Experimental Data

Ultimate stress for each column is given in tables 3 and 4 and also
is plotted in relation to the tangent-modulus column curves in figures 30
and 31.

The method of obtaining the tangent modulus from the streas-strain
curve may be of interest here. A semitransparentmirror with a one-to-
one transmission-refletiionratio was used. It was placed perpendicular
to the curve at the desired point and perpendicularitywas checked by
casting the reflected image of a short portion of curve in front of the
mirror onto a short portion of the curve seen through the mirror. A
line - the normal to the curve - was then scribed along the face of the
mirror. The method proved to be more accurate than drawing the tangent
by eye, especially in the sense that several operators with little
experience could obtain precisely the same value of modulus.

Local buckling data were evaluated by means of the “top-of-the-
lmee” method as developed by the NACA (reference 19) and critical plate-
buckling stresses thus obtained are plotted on the “D”-series column
curve, figure 31. Typical curves of load against local deflection for
the “D’’-series columns are shown in figure 32. No local buckling data
were obtainable for the “B” series, since the critical plate stress was
h the plastic range with the result that beginning of plate buckli&
was immediately followed by complete collapse of the column. Consequently,
the ultimate load for the column coincided with the plate buckling stress,
and no postbuckl~ strength was indicated. This observation is in
accordance with resuits given in reference (21). In contrati, the
“D”-series columns had considerable postbucklimg strength as shown in
table 4 and figure 31.

CO NC LUDINGRE MAR KS

The following results were observed from an investigation made to
determine the interaction of columu and local buckling in compression
members.

1. The test results do not show any noticeable interaction effeet
for the square tties testeal. This seems to substantiatethe theo~,
which shows the order of stress reduction due to Interaction effect to
be so small that it cannot be differentiatedexperimentally from the

.
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reduction of concentric buckling stress occurring as a result of inherent
eccentricities.

.
2. The interaction effect is negligible for box sections, as

indicated by both theory and experiment. As stated in the paper, the
same conclusion applies to the common sizes of I-, H-, and channel
sections, but not to sections for which torsional instability is an
important factor, such as T and angle shapes.

3. Tests confirm the known fact that appreciable postbuclil.ing
strength beyond the critical plate stress is possible when the latter
is well within the elastic range. Conversely, when the critical plate
stress is in the plastic range, complete collapse of the column accom-
Panies beginning of plate buckling.

Cornell University
Ithaca, N. Y., kch 23, 1951

-,.

— ..— .— —.—.



84

REFERENCES

NACA TN 26L0

1. Bijl~d, P. P.: _SiS of the Elastic and Plastic Stability of
Sandwich Plates by the Method of Split Rigidities. Preprint
No. 259, Sherman M. Fairchild Pub. Fund, Inst. Aero Sci., Jan. 1950.

2. Bijlaard, P. P.: Afleiding van eenvoudige gebruiksformulesen
grafieken ter bepaling van het plooigevaar van de wanden van
vloeistalen staafprofielen. De Ingenieur Ned. Indie, vol. 6,
no. 10, 1939, PP. I.239-I.256.

3. Bijlaard, P. P.: Theory of the Plastic Stability of Thin Plates.
Rib. Int. Assoc. Bridge and Structural Eng., vol. 6, 1940-41,
pp. 45-69.

4. Bijlasrd, P. P.: Theory and Tests on the Plastic Stabili~ of Plates
and Shells. Jour. Aero. Sci., vol. 16, no. 9, Sept. 1949, PP. 529-541.

5. Stowell, Elbridge Z.: A Unified Theory of Plastic Buckling of Columns
and Plates. NACA Rep. 898, 1948. (Formerly NACA TN 1556.)

6. Ttioshenko, S.: Theory of Elastic Stability. First ed., McGraw-Hill
Book CO., 1936.

7. Bijlaard, P. P.: Nauwkeurige berekening van de plooispannfng van
hoekstalen, zoowel voorhet elastische als voor het plastische gebied.
De Ingenieur Ned. Indie, vol. 6, no. 3, 1939, pp. 1.’35-1.45.

8. Bijlmd, P. P.: Some Contributions to the Theory of Elastic and
Plastic Stabili@. pub. Int. Assoc. Bridge and Structural Eng.,
VO1. 8, 1947, pp. 17-80.

9. Bijl=d, P. P.: Berekedng yan de knikspanninn van gekoppelde
profielen volgens een nieuwe methode. De Ingenieur Ned. Indie,
vol. 6, no. 3> 1939J PP. 1.4%1.46.

10. Bijlaard, P. P.: On the Torsional and Flexural Stability of Thin
Walled Open Sections. Verhand. Ken. Ned. AJsad.Wetensch. (Amsterdam),
VO1. m, no. 3, 1948, PP. 314-3~.

11. Bijlaad, P. P.: On the Elastic Stability of Sandwich Plates.
I. Verhsad. Ken. Akad. Wetensch. (Amsterdam),vol. L, no. 1,
1947, pp. 79-87.

On the Elastic Stability of Sandwich Plates. II. Verhand. Ken.
Akad. Wetensch. (Amsterdam),vol. L, no. 2, 1947, pp. 186-193.



NACA TN 2640 85

12.

13.

14.

15.

~6.

17.

18.

19.

20.

21.

Bleich, F.: Theorie
Springer (Berlin),

und Berechnung
1924.

der eisernen Bficken. Julius

Lundquist, Eugene E., Stowell, Elbridge Z., and Schuette, Evan H.:
Winciples of Mometi Distribution Applied to Stability of Structures
Composed of Bars or Plates. NACA Rep. 809, 1945. (Formerly NACA
ARR 3K06.)

fioll, W. D.: Tables of Stiffness and Carry-Over Factor for Flat
Rectangular Plates under Compression. NXCAARR 3K27, 1943.

Kappus, Robert: Twisting Failure of Centrally Loaded Open-Section
Columns in the Elastic Range. NACA TM 851, 1938.

Lundquist, Eugene E., and Fligg, Claude M.: A Theory for fiimary
Failure of Strai@t CentralJy Loaded Columns. -NACA Rep. 582, 1937.

Niles, A. S., and Newell.,J. S.: Airplane Structures. Vol. II.
John Wiley & Sons, Inc., 1943.

Ramberg, Walter, and Osgood, William R.: Descri@ion of Stress-Strain
Curves by Three Parameters. NACA TN 902, 1943.

Hu, PaiC., Ltiquist, Eugene E., and Batdorf, S. B.: Effect of
Small Deviations from Flatness ineffective Width and BuckMng
of Plates in Compression. NACATN 1124, 1946.

Pridej Richard A., and Heimerl, George J.: Plastic Buckling of
Simply Supported Compressed Plates. NACA TN 1817, 1949.

Hetierl, George
NACATN*l~O,

\

\ 4

J- Determination of Plate Compressive Stre~hs.
l;i7.

—— —-



CD
m

TABLE l.- vM-uE3 OF u FROM TE93RE%ICAL 12WESTIMTIOR

a al
:cm)

50

62 269,&x
3,830,0x

87,5 I 135,5e
1,925)00(

-1-
373

8,46
M))la

620 2,69
s8,s0

acr acr
ac 03 %% alp from

‘2-3 equat
from

ion equation
(33) (177)

I I I I 1 I

5,917 2,60T 1,267 5,m 2,@7 2,421

34,W0 37,0m 18,W 83,6cKI34,460 3k,380

5,483 3,333 l,ob 5,444 2,755 2,775 2,?41

77,9Q3 4-f,350 1L,8X3 77,250 39,m 39,1w 38,9=3

5,230 5,97 910 3,533 3,477
74,300 84,0i30E,91O y3,2Cxl 49,40C

flcr
from
quation
(178)

2,391

33,9W

2,403
34,150

2,700
38,3w

3,3%
lT,2~

T
‘cr ‘cr

from from

>~a egy8mt9y

1

I

*

1

=t=

+

2,325 2,287

33,~o 3p,~

1,%)& 1,883
27,040 !X,7W

1unit

1:g/c#pi

Lg/cm2
PSI

tg/cm2
p3i

1sg/cm2

JIB i

cg/cm2
psi



NACA TN 2640

TABLE 2.- PROPERUES OF TUBE SP~IMEI?S

rSeries “B” tubes sre 2 by 2 by 0.062 in. with av. r = 0.792
L

in.; series “D” tubes sre 2* by 2A by 0.047 in. with

Tube

l~tl-~

tlB!I_p

IIB1l-1

“B”-2
“B”-l
11.J3,1_2
ltB,,_~
ll~l,_~
lkj3i1_2
llB1l-2

“B”-2
ttBt,_~

“B”-3
l~tt_3

col-

umn

Es-l
Ss-2
Es-1
Es-2
s-1
s-2
M-1
M-2
I-1
I-2
I-3
ML-1
L-1
L-2

L
“D”-k SS-1
“D”-l S-1
“D”-2 IiM-l
“D”-4 MS-1
“D”_3 I-2
“Di~_l l_l
“’D”_5 L_l

c c

av. r = 1.001 in.1

I I lCorrectedl
cut free

~en@~ Weight Area

(tn.) (W-) (Sq in.) l’enp, L/r

(in.)

Series “B” tubes

8.05
8.11
u.38
11.39
17.48
17.49
26.00
26.00
32.34
32.36
32.36
$.;;

M:23

17.31
38.88
67.00
72.16
81.78
81.81
123.49

171.7
169.I
238.9
238.6
368.7
366.6
551.8
549.2
677.3
677.2
676.2
771.4
853.0
850.2

0.4-81
.470’
~:;:

.476

.474

.478

.476

.473

.473

.472

.479

.479

.477

Series “D” tubes

3U6.2
780.0
1349.7
1446.0
1635.2
1641.o
2545.0

0.452
.452
.455
.452
.452
.453
.465

u.82
11.88
15.23
15.24
21.45
21.46
30.02
30.02
36.37
36.39
36.39
y:

U:26

14.95
15.00
19.25
19.25
27.15
27.15
37.95
37.95
45.95
45.95
45.95
51.00
56.00
56.00

2L25
43.03
71.09
76.25
85.87
85.90
127.58

21.23
43.00
71.02
+6. 17
85.78
85.81

127.45

87

— —.–——— —. .— — ———
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TABLE 3.- TEST RECORDOF SERIES “B” TUBES

rDimensions: 12 by 2 bY 0.062 h.
L

Designation I Theoretical

Tube

“B”-l
,1B,1_2
!!B,t_~
11B1,_2

“B”-l
!,B,1_2

“B”-l
i,Btt_~

“B”-2
!!B,1_2

“B”-2
11B11_3

“B”-3
“B”-3

I;Olumn ‘late
Ucr

Ss -1 37,250
SS-2 37,2F
Es-1 37,2w
Es-2 37,250
s-1 37,250
s-2 37,250
M-1 37,2%
M-2 37,250
I-1 37,250
I-2 37,250
I-3 37,250

ML-1 37,250
L-1 37,250
L-2 37,2~

I
columnp

Ucr cr

43,500 17,900
43,500 17,500
k2,700 17,630
k2,700 17,600
40,goo 17,720
40,900 17,630
38,500 17,800
38,5oo 17,720
37,250 17,600
37,250 17,6oo
37,250 17,590
36,500 17,k70
33,600 16,100
33,600 16,030

Experimental I

%lt

17,850
17,700
17,900
17,400
17,750
17,450
17,500
17,250
16,900
17,400
17,150
17,150
15,400
15,400

1 ‘ult/ ‘cr
%lt

37,150
37,65c
37,80J
36,800
37,2P
36,810
36,600
36,2c0
35,750
36,800
36,35o
35,800

0.997
1.010
1.015
.988

1.001
.988
.983
.972
.g60
.988
.975
.980

32,200
● 959

32,350 .963
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TABLE 4.- TEST RECORD OF Sl@JE2 “D” TUBES

[ 12~bY2$bY 0.047 in.DimensiOm: *

Des Ignation I Theoretical I Experimental
Ratio of experimental

to theoretical values

Colulml ‘y c“;: pm Pult %.lt ~
Pl te

Tube
7

‘uMPcr Zcr Ucr
c

l!D11-4 ss-~ 1A,s29 4’2,000 647o 9670 21,390 14,@ 1.491 0.97

“D”-l s-1 14,327 37,650 6470 ya)o 20,s70 14,m 1.APo .991
“))”-2 ~-~ 14,325 20,700 6520 G800 14,920 13,8P 1.042 .%7
“D”-4 MS-l lA,32~ N3,mo 6hT0 6525 14,420 14,260 1.CQ7 .995
‘m’l_3 I-2 14,325 14,325 6W @30 13,790 ------ .*3 -----

‘D”-l bl-1 14,327 14,325 6w0 G050 13,330 ------ .930 -----
1~,,-5 L-1 lA,s2~ 6,wo 3020 25Q0 6,240 ------ .%0

-----

aExpertiental plate Ucr aa determined by NACA tmp-of-knee method.

b~ te~t6 on Sme COhmn.
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Figure 1.- Diagram of
wave

buckling stresses plotted against ratio of half
length to web width 13= a/b.
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(a) Cross-sectional sketch of column.

(b) Cross-sectional sketch of web showing
plate buckling.

interaction of column and

(c) Sketch of column showing axis notation.

Figure 2.- I-section column showing various notations.
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Figure 3.- Calculated buckling stresses of T-section of figure 16 for
several half wave lengths a.



NACA TN 26ko 93

.

—

t
z l_L

(a) Cross-sectional sketch ofcolurtm.
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(b) Cross-sectional sketch of web showing instability.

Figure 4.- Asymmetric column supported at both unloaded edges by flanges
of different width and thickness.
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Figure 5.- Sketch of lower half of flange.
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Figure 6.- Sketch of T-stiffener and column made of T-sections.
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(a) Sketch of colum showing various notation.

(b) Bucklingas colum without distortion of cross section.

(c) Buckling as plate with distortion of cross section.

Figure 7.- Sketch of I-section with narrow and thin flanges.
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Figure 8.. Curves of V agatist B in elastic range for I-section
columns with flanges of 4- and 2-inch width.
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Figure 9.- Diagram of square ttie or box section.

Figure lo. - Deflective forces %_~a ~ caused by deflection W1 of box

ax2
section.
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Figure 11.- Square tube with plates buckling symmetricallywith respect
to vertic&l and horizontal axes.
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mgure 12.- Square tube showing alternate mode of web buckling.
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Figure 13.- H-section where width of flanges is such that they are

rotationally restrained from buckling by web.
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Figure 14. - Sketch of T-section showing notations.
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Figure 15. - T-section with small rotational restraint of web.
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30 X 1 cm2

T

mgure I-6. - T-section where flange has relatively large torsional
rigidity and is much more stable than the web, so that *b is
substantially rotationally restrained.
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Figure 17. - Deflection of cross section in figure 16 consisting of
translation .1, rotation with respect to shear center S, and plate
buckling of web with ~ deflection w3.

Figure Deflections of case (2) (w2) and”case (3) (.3).
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Figure 19. - Deflections of case (1) and of combined case (2-3).
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Figure 20.- Distortion of

.
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cantilever beam under uniform load q.
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Figure 21. - Flexural and
displacement

torsional buckling of T-section showing
cc‘ of center of gavity C.
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Figure 22. - Flexural and torsional buckling of angle section.
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Figure 23.- Stress-strain test blocking assembly.
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Figure 24. - Internal expansor for tube specimens, assembled.
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~gure 25.- Internel expansor showing individual parts.
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Figure 26.- ~ic~ tiresa-strain curves for square-tube specirmm.
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Figure 27.- Curve for cr~ plotted on same coordinate system as stress-
strain curve.
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Figure 28.- Local buckling gage and supporting collar.
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Figure 29.- General view of teat arrangement.
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mgure 30.- Teat results for series “B” s~cimens.
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Figure 31.- Teat results for series “D” apecimem.



110 mcA m 2640

700’

600(

500C

400C

5
-

!

3000

2000

1000

0
0

1/ I 1

Plate Pcr - 6300 ,

I
O South face gage
o North face gage

.01 .02
● 03 .04 .05

Local deflection, in.

Figure 32.. Local buckling curves for square tube spectien “D’’.~o~o
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